Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 9(1): 1476, 2018 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-29662058

RESUMEN

The Northern Hemisphere experienced dramatic changes during the last glacial, featuring vast ice sheets and abrupt climate events, while high northern latitudes during the last interglacial (Eemian) were warmer than today. Here we use high-resolution aerosol records from the Greenland NEEM ice core to reconstruct the environmental alterations in aerosol source regions accompanying these changes. Separating source and transport effects, we find strongly reduced terrestrial biogenic emissions during glacial times reflecting net loss of vegetated area in North America. Rapid climate changes during the glacial have little effect on terrestrial biogenic aerosol emissions. A strong increase in terrestrial dust emissions during the coldest intervals indicates higher aridity and dust storm activity in East Asian deserts. Glacial sea salt aerosol emissions in the North Atlantic region increase only moderately (50%), likely due to sea ice expansion. Lower aerosol concentrations in Eemian ice compared to the Holocene are mainly due to shortened atmospheric residence time, while emissions changed little.

2.
Environ Sci Technol ; 50(13): 7066-73, 2016 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-27244483

RESUMEN

Atmospheric nuclear weapons testing (NWT) resulted in the injection of plutonium (Pu) into the atmosphere and subsequent global deposition. We present a new method for continuous semiquantitative measurement of (239)Pu in ice cores, which was used to develop annual records of fallout from NWT in ten ice cores from Greenland and Antarctica. The (239)Pu was measured directly using an inductively coupled plasma-sector field mass spectrometer, thereby reducing analysis time and increasing depth-resolution with respect to previous methods. To validate this method, we compared our one year averaged results to published (239)Pu records and other records of NWT. The (239)Pu profiles from the Arctic ice cores reflected global trends in NWT and were in agreement with discrete Pu profiles from lower latitude ice cores. The (239)Pu measurements in the Antarctic ice cores tracked low latitude NWT, consistent with previously published discrete records from Antarctica. Advantages of the continuous (239)Pu measurement method are (1) reduced sample preparation and analysis time; (2) no requirement for additional ice samples for NWT fallout determinations; (3) measurements are exactly coregistered with all other chemical, elemental, isotopic, and gas measurements from the continuous analytical system; and (4) the long half-life means the (239)Pu record is stable through time.


Asunto(s)
Hielo , Plutonio , Atmósfera , Semivida , Armas Nucleares
3.
Nature ; 523(7562): 543-9, 2015 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-26153860

RESUMEN

Volcanic eruptions contribute to climate variability, but quantifying these contributions has been limited by inconsistencies in the timing of atmospheric volcanic aerosol loading determined from ice cores and subsequent cooling from climate proxies such as tree rings. Here we resolve these inconsistencies and show that large eruptions in the tropics and high latitudes were primary drivers of interannual-to-decadal temperature variability in the Northern Hemisphere during the past 2,500 years. Our results are based on new records of atmospheric aerosol loading developed from high-resolution, multi-parameter measurements from an array of Greenland and Antarctic ice cores as well as distinctive age markers to constrain chronologies. Overall, cooling was proportional to the magnitude of volcanic forcing and persisted for up to ten years after some of the largest eruptive episodes. Our revised timescale more firmly implicates volcanic eruptions as catalysts in the major sixth-century pandemics, famines, and socioeconomic disruptions in Eurasia and Mesoamerica while allowing multi-millennium quantification of climate response to volcanic forcing.


Asunto(s)
Clima , Temperatura , Erupciones Volcánicas/historia , Aerosoles/análisis , Américas , Regiones Antárticas , Atmósfera/química , Berilio , Radioisótopos de Carbono , Desastres/historia , Europa (Continente) , Groenlandia , Historia Antigua , Historia Medieval , Hielo/análisis , Radioisótopos , Datación Radiométrica , Estaciones del Año , Azufre , Factores de Tiempo , Árboles/anatomía & histología , Árboles/crecimiento & desarrollo , Clima Tropical
4.
Nature ; 461(7262): 385-8, 2009 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-19759618

RESUMEN

On entering an era of global warming, the stability of the Greenland ice sheet (GIS) is an important concern, especially in the light of new evidence of rapidly changing flow and melt conditions at the GIS margins. Studying the response of the GIS to past climatic change may help to advance our understanding of GIS dynamics. The previous interpretation of evidence from stable isotopes (delta(18)O) in water from GIS ice cores was that Holocene climate variability on the GIS differed spatially and that a consistent Holocene climate optimum-the unusually warm period from about 9,000 to 6,000 years ago found in many northern-latitude palaeoclimate records-did not exist. Here we extract both the Greenland Holocene temperature history and the evolution of GIS surface elevation at four GIS locations. We achieve this by comparing delta(18)O from GIS ice cores with delta(18)O from ice cores from small marginal icecaps. Contrary to the earlier interpretation of delta(18)O evidence from ice cores, our new temperature history reveals a pronounced Holocene climatic optimum in Greenland coinciding with maximum thinning near the GIS margins. Our delta(18)O-based results are corroborated by the air content of ice cores, a proxy for surface elevation. State-of-the-art ice sheet models are generally found to be underestimating the extent and changes in GIS elevation and area; our findings may help to improve the ability of models to reproduce the GIS response to Holocene climate.


Asunto(s)
Efecto Invernadero , Cubierta de Hielo , Altitud , Groenlandia , Historia Antigua , Oxígeno/análisis , Isótopos de Oxígeno , Temperatura
5.
Nature ; 452(7187): 616-9, 2008 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-18385736

RESUMEN

Dust can affect the radiative balance of the atmosphere by absorbing or reflecting incoming solar radiation; it can also be a source of micronutrients, such as iron, to the ocean. It has been suggested that production, transport and deposition of dust is influenced by climatic changes on glacial-interglacial timescales. Here we present a high-resolution record of aeolian dust from the EPICA Dome C ice core in East Antarctica, which provides an undisturbed climate sequence over the past eight climatic cycles. We find that there is a significant correlation between dust flux and temperature records during glacial periods that is absent during interglacial periods. Our data suggest that dust flux is increasingly correlated with Antarctic temperature as the climate becomes colder. We interpret this as progressive coupling of the climates of Antarctic and lower latitudes. Limited changes in glacial-interglacial atmospheric transport time suggest that the sources and lifetime of dust are the main factors controlling the high glacial dust input. We propose that the observed approximately 25-fold increase in glacial dust flux over all eight glacial periods can be attributed to a strengthening of South American dust sources, together with a longer lifetime for atmospheric dust particles in the upper troposphere resulting from a reduced hydrological cycle during the ice ages.

6.
Science ; 317(5839): 793-6, 2007 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-17615306

RESUMEN

A high-resolution deuterium profile is now available along the entire European Project for Ice Coring in Antarctica Dome C ice core, extending this climate record back to marine isotope stage 20.2, approximately 800,000 years ago. Experiments performed with an atmospheric general circulation model including water isotopes support its temperature interpretation. We assessed the general correspondence between Dansgaard-Oeschger events and their smoothed Antarctic counterparts for this Dome C record, which reveals the presence of such features with similar amplitudes during previous glacial periods. We suggest that the interplay between obliquity and precession accounts for the variable intensity of interglacial periods in ice core records.

7.
Nature ; 440(7083): 491-6, 2006 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-16554810

RESUMEN

Sea ice and dust flux increased greatly in the Southern Ocean during the last glacial period. Palaeorecords provide contradictory evidence about marine productivity in this region, but beyond one glacial cycle, data were sparse. Here we present continuous chemical proxy data spanning the last eight glacial cycles (740,000 years) from the Dome C Antarctic ice core. These data constrain winter sea-ice extent in the Indian Ocean, Southern Ocean biogenic productivity and Patagonian climatic conditions. We found that maximum sea-ice extent is closely tied to Antarctic temperature on multi-millennial timescales, but less so on shorter timescales. Biological dimethylsulphide emissions south of the polar front seem to have changed little with climate, suggesting that sulphur compounds were not active in climate regulation. We observe large glacial-interglacial contrasts in iron deposition, which we infer reflects strongly changing Patagonian conditions. During glacial terminations, changes in Patagonia apparently preceded sea-ice reduction, indicating that multiple mechanisms may be responsible for different phases of CO2 increase during glacial terminations. We observe no changes in internal climatic feedbacks that could have caused the change in amplitude of Antarctic temperature variations observed 440,000 years ago.


Asunto(s)
Ambiente , Hielo , Hierro , Calcio/análisis , Clima , Hierro/análisis , Biología Marina , Mesilatos/análisis , Océanos y Mares , Periodicidad , Sodio/análisis , América del Sur
8.
Nature ; 431(7005): 147-51, 2004 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-15356621

RESUMEN

Two deep ice cores from central Greenland, drilled in the 1990s, have played a key role in climate reconstructions of the Northern Hemisphere, but the oldest sections of the cores were disturbed in chronology owing to ice folding near the bedrock. Here we present an undisturbed climate record from a North Greenland ice core, which extends back to 123,000 years before the present, within the last interglacial period. The oxygen isotopes in the ice imply that climate was stable during the last interglacial period, with temperatures 5 degrees C warmer than today. We find unexpectedly large temperature differences between our new record from northern Greenland and the undisturbed sections of the cores from central Greenland, suggesting that the extent of ice in the Northern Hemisphere modulated the latitudinal temperature gradients in Greenland. This record shows a slow decline in temperatures that marked the initiation of the last glacial period. Our record reveals a hitherto unrecognized warm period initiated by an abrupt climate warming about 115,000 years ago, before glacial conditions were fully developed. This event does not appear to have an immediate Antarctic counterpart, suggesting that the climate see-saw between the hemispheres (which dominated the last glacial period) was not operating at this time.

9.
Proc Natl Acad Sci U S A ; 96(14): 8017-21, 1999 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-10393940

RESUMEN

Studies of biotic remains of polar ice caps have been limited to morphological identification of plant pollen and spores. By using sensitive molecular techniques, we now demonstrate a much greater range of detectable organisms; from 2000- and 4000-year-old ice-core samples, we obtained and characterized 120 clones that represent at least 57 distinct taxa and reveal a diversity of fungi, plants, algae, and protists. The organisms derive from distant sources as well as from the local arctic environment. Our results suggest that additional taxa may soon be readily identified, providing a plank for future studies of deep ice cores and yielding valuable information about ancient communities and their change over time.


Asunto(s)
ADN Ribosómico/genética , Evolución Molecular , Fósiles , Hongos/clasificación , Hongos/genética , Variación Genética , ARN Ribosómico 18S/genética , Secuencia de Bases , ADN de Hongos/genética , Hielo , Datos de Secuencia Molecular , Alineación de Secuencia , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...