Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 5290, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-37002335

RESUMEN

Peptide human leukocyte antigen (pHLA) targeting therapeutics like T-cell receptor based adoptive cell therapy or bispecific T cell engaging receptor molecules hold great promise for the treatment of cancer. Comprehensive pre-clinical screening of therapeutic candidates is important to ensure patient safety but is challenging because of the size of the potential off-target space. By combining stabilized peptide-receptive HLA molecules with microarray printing and screening, we have developed an ultra-high-throughput screening platform named ValidaTe that enables large scale evaluation of pHLA-binder interactions. We demonstrate its potential by measuring and analyzing over 30.000 binding curves for a high-affinity T cell Engaging Receptor towards a large pHLA library. Compared to a dataset obtained by conventional bio-layer interferometry measurements, we illustrate that a massively increased throughput (over 650 fold) is obtained by our microarray screening, paving the way for use in pre-clinical safety screening of pHLA-targeting drugs.


Asunto(s)
Neoplasias , Péptidos , Humanos , Péptidos/química , Receptores de Antígenos de Linfocitos T , Biblioteca de Péptidos
2.
J Cell Biol ; 218(9): 3019-3038, 2019 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-31431476

RESUMEN

Retromer is an evolutionarily conserved multiprotein complex that orchestrates the endocytic recycling of integral membrane proteins. Here, we demonstrate that retromer is also required to maintain lysosomal amino acid signaling through mTORC1 across species. Without retromer, amino acids no longer stimulate mTORC1 translocation to the lysosomal membrane, which leads to a loss of mTORC1 activity and increased induction of autophagy. Mechanistically, we show that its effect on mTORC1 activity is not linked to retromer's role in the recycling of transmembrane proteins. Instead, retromer cooperates with the RAB7-GAP TBC1D5 to restrict late endosomal RAB7 into microdomains that are spatially separated from the amino acid-sensing domains. Upon loss of retromer, RAB7 expands into the ragulator-decorated amino acid-sensing domains and interferes with RAG-GTPase and mTORC1 recruitment. Depletion of retromer in Caenorhabditis elegans reduces mTORC1 signaling and extends the lifespan of the worms, confirming an evolutionarily conserved and unexpected role for retromer in the regulation of mTORC1 activity and longevity.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Longevidad , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Microdominios de Membrana/metabolismo , Transducción de Señal , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Microdominios de Membrana/genética , Proteínas de Unión al GTP rab/genética , Proteínas de Unión a GTP rab7
3.
Plant J ; 2018 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-29876984

RESUMEN

The folate biosynthetic pathway and its key enzyme dihydrofolate reductase (DHFR) is a popular target for drug development due to its essential role in the synthesis of DNA precursors and some amino acids. Despite its importance, little is known about plant DHFRs, which, like the enzymes from the malarial parasite Plasmodium, are bifunctional, possessing DHFR and thymidylate synthase (TS) domains. Here using genetic knockout lines we confirmed that either DHFR-TS1 or DHFR-TS2 (but not DHFR-TS3) was essential for seed development. Screening mutated Arabidopsis thaliana seeds for resistance to antimalarial DHFR-inhibitor drugs pyrimethamine and cycloguanil identified causal lesions in DHFR-TS1 and DHFR-TS2, respectively, near the predicted substrate-binding site. The different drug resistance profiles for the plants, enabled by the G137D mutation in DHFR-TS1 and the A71V mutation in DHFR-TS2, were consistent with biochemical studies using recombinant proteins and could be explained by structural models. These findings provide a great improvement in our understanding of plant DHFR-TS and suggest how plant-specific inhibitors might be developed, as DHFR is not currently targeted by commercial herbicides.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...