Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 21(17)2021 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-34502837

RESUMEN

Horizontal-to-Vertical Spectral Ratios (HVSR) and Rayleigh group velocity dispersion curves (DC) can be used to estimate the shallow S-wave velocity (VS) structure. Knowing the VS structure is important for geophysical data interpretation either in order to better constrain data inversions for P-wave velocity (VP) structures such as travel time tomography or full waveform inversions or to directly study the VS structure for geo-engineering purposes (e.g., ground motion prediction). The joint inversion of HVSR and dispersion data for 1D VS structure allows characterising the uppermost crust and near surface, where the HVSR data (0.03 to 10s) are most sensitive while the dispersion data (1 to 30s) constrain the deeper model which would, otherwise, add complexity to the HVSR data inversion and adversely affect its convergence. During a large-scale experiment, 197 three-component short-period stations, 41 broad band instruments and 190 geophones were continuously operated for 6 months (April to October 2017) covering an area of approximately 1500km2 with a site spacing of approximately 1 to 3km. Joint inversion of HVSR and DC allowed estimating VS and, to some extent density, down to depths of around 1000m. Broadband and short period instruments performed statistically better than geophone nodes due to the latter's gap in sensitivity between HVSR and DC. It may be possible to use HVSR data in a joint inversion with DC, increasing resolution for the shallower layers and/or alleviating the absence of short period DC data, which may be harder to obtain. By including HVSR to DC inversions, confidence improvements of two to three times for layers above 300m were achieved. Furthermore, HVSR/DC joint inversion may be useful to generate initial models for 3D tomographic inversions in large scale deployments. Lastly, the joint inversion of HVSR and DC data can be sensitive to density but this sensitivity is situational and depends strongly on the other inversion parameters, namely VS and VP. Density estimates from a HVSR/DC joint inversion should be treated with care, while some subsurface structures may be sensitive, others are clearly not. Inclusion of gravity inversion to HVSR/DC joint inversion may be possible and prove useful.


Asunto(s)
Movimiento (Física)
2.
Nat Commun ; 11(1): 3838, 2020 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-32724062

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Nat Commun ; 11(1): 2171, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32358508

RESUMEN

The dynamics of continental subduction is largely controlled by the rheological properties of rocks involved along the subduction channel. Serpentinites have low viscosity at geological strain rates. However, compelling geophysical evidence of a serpentinite channel during continental subduction is still lacking. Here we show that anomalously low shear-wave seismic velocities are found beneath the Western Alps, along the plate interface between the European slab and the overlying Adriatic mantle. We propose that these seismic velocities indicate the stacked remnants of a weak fossilised serpentinite channel, which includes both slivers of abyssal serpentinite formed at the ocean floor and mantle-wedge serpentinite formed by fluid release from the subducting slab. Our results suggest that this serpentinized plate interface may have favoured the subduction of continental crust into the upper mantle and the formation/exhumation of ultra-high pressure metamorphic rocks, providing new constraints to develop the conceptual and quantitative understanding of continental-subduction dynamics.

4.
Science ; 307(5715): 1615-8, 2005 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-15761151

RESUMEN

Cross-correlation of 1 month of ambient seismic noise recorded at USArray stations in California yields hundreds of short-period surface-wave group-speed measurements on interstation paths. We used these measurements to construct tomographic images of the principal geological units of California, with low-speed anomalies corresponding to the main sedimentary basins and high-speed anomalies corresponding to the igneous cores of the major mountain ranges. This method can improve the resolution and fidelity of crustal images obtained from surface-wave analyses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...