Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Tissue Eng Part A ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38526390

RESUMEN

Biomaterial scaffolds have been used successfully to promote the regenerative repair of small endometrial lesions in small rodents, providing partial restoration of gestational function. The use of rabbits in this study allowed us to investigate a larger endometrial tissue defect and myometrial injury model. A gelatin/polycaprolactone (GT/PCL) gradient-layer biofilm was sutured at the defect to guide the reconstruction of the original tissue structure. Twenty-eight days postimplantation, the uterine cavity had been restored to its original morphology, endometrial growth was accompanied by the formation of glands and blood vessels, and the fragmented myofibers of the uterine smooth muscle had begun to resemble the normal structure of the lagomorph uterine cavity, arranging in a circular luminal pattern and a longitudinal serosal pattern. In addition, the repair site supported both embryonic implantation into the placenta and normal embryonic development. Four-dimensional label-free proteomic analysis identified the cell adhesion molecules, phagosome, ferroptosis, rap1 signaling pathways, hematopoietic cell lineage, complement and coagulation cascades, tricarboxylic acid cycle, carbon metabolism, and hypoxia inducible factor (HIF)-1 signaling pathways as important in the endogenous repair process of uterine tissue injury, and acetylation of protein modification sites upregulated these signaling pathways.

2.
Dent Mater ; 40(4): 689-699, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38395737

RESUMEN

OBJECTIVES: Surface characteristics of implant reconstructions determine the gingival fibroblast (GF) response and thus soft tissue integration (STI). However, for monolithic implant reconstructions it is unknown whether the (hybrid) ceramic biomaterial type and its surface treatment affect GF response. Therefore, this investigation examined the influence of the implant reconstruction biomaterials hybrid ceramic (HC), lithium disilicate ceramic (LS), 4 and 5 mol% yttria partially stabilized zirconiumdioxide ceramics (4/5Y-PSZ) and their surface treatment - machining, polishing or glazing - on surface characteristics and GF response. METHODS: After characterization of surface topography and wettability by scanning electron microscopy, interferometry and contact angle measurement, the adhesion, morphology, metabolic activity and proliferation of GFs from six donors was investigated by fluorescent staining and a resazurin-based assay at days 1, 3 and 7. Titanium (Ti) served as control. RESULTS: Biomaterial type and surface treatment affected the GF response in a topography-dependent manner. Smooth polished and glazed surfaces demonstrated enhanced GF adhesion and earlier proliferation onset compared to rough machined surfaces. Due to minor differences in surface topography of polished and glazed surfaces, however, the GF response was similar for polished and glazed HC, LS, 4- and 5Y-PSZ as well as Ti. SIGNIFICANCE: Within the limits of the present investigation, polishing and glazing of machined HC, LS and 4/5Y-PSZ can be recommended to support STI-relevant cell functions in GF. Since the GF response on polished and glazed HC, LS, 4- and 5Y-PSZ surfaces and the Ti control was comparable, this investigation proofed equal cytocompatibility of these surfaces in vitro.


Asunto(s)
Materiales Biocompatibles , Implantes Dentales , Materiales Biocompatibles/farmacología , Ensayo de Materiales , Propiedades de Superficie , Porcelana Dental , Cerámica , Fibroblastos , Circonio
3.
J Biomed Mater Res A ; 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38251807

RESUMEN

To date, it is unknown whether 3D printed fixed oral implant-supported prostheses can achieve comparable soft tissue integration (STI) to clinically established subtractively manufactured counterparts. STI is mediated among others by gingival fibroblasts (GFs) and is modulated by biomaterial surface characteristics. Therefore, the aim of the present work was to investigate the GF response of a 3D printed methacrylate photopolymer and a hybrid ceramic-filled methacrylate photopolymer for fixed implant-supported prostheses in the sense of supporting an STI. Subtractively manufactured samples made from methacrylate polymer and hybrid ceramic were evaluated for comparison and samples from yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP), comprising well documented biocompatibility, served as control. Surface topography was analyzed by scanning electron microscopy and interferometry, elemental composition by energy-dispersive x-ray spectroscopy, and wettability by contact angle measurement. The response of GFs obtained from five donors was examined in terms of membrane integrity, adhesion, morphogenesis, metabolic activity, and proliferation behavior by a lactate-dehydrogenase assay, fluorescent staining, a resazurin-based assay, and DNA quantification. The results revealed all surfaces were smooth and hydrophilic. GF adhesion, metabolic activity and proliferation were impaired by 3D printed biomaterials compared to subtractively manufactured comparison surfaces and the 3Y-TZP control, whereas membrane integrity was comparable. Within the limits of the present investigation, it was concluded that subtractively manufactured surfaces are superior compared to 3D printed surfaces to support STI. For the development of biologically optimized 3D printable biomaterials, consecutive studies will focus on the improvement of cytocompatibility and the synthesis of STI-relevant extracellular matrix constituents.

4.
Dent Mater ; 39(11): 994-1003, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37730495

RESUMEN

OBJECTIVE: The aim was to investigate the effect of particles released during grinding of dental composites on human gingival keratinocytes (HGK). METHODS: Specimens from Filtek™ Supreme XTE and ceram.x® universal were prepared and ground to dust. The dust was filtered (≤ 5 µm) and the particle size distribution was examined using NANO-flex®-180° dynamic light scattering (DLS). Suspensions at five concentrations (3, 10, 30, 100 and 300 µg/mL) were prepared using keratinocyte growth medium (KGM). These suspensions, as well as a positive (CuO) and a negative control (KGM) were added to HGK. The cells treated with Filtek™ Supreme XTE suspensions were analyzed by real-time monitoring using RTCA iCELLigence™. In addition, light and scanning electron microscopic images of the exposed cells were taken. Indirect immunofluorescence staining was performed to detect the extracellular matrix protein fibronectin. RESULTS: In distilled water, DLS showed similar particles' range (171.9 nm- 2.7 µm) for both composites. In saliva, larger particles were detected (Filtek™ Supreme XTE: 243 nm-6,5 µm; ceram.x® universal: 204 nm- 4,6 µm). iCELLigence™ revealed similar results of cell growth parameters for HGK incubated with composite dust (≤ 5 µm) at different concentrations. The microscopic images indicated unaltered cell structures and formation of large agglomerates with high particle concentration (> 100 µg/mL). Exposure to composite dust resulted in upregulation of fibronectin expression. SIGNIFICANCE: Grinding of dental composite materials generates dust particles of different sizes. The particle size distribution seems to be more influenced by the suspending medium than the material itself. While cell growth of HGK seem not to be affected by the particles, an upregulation of fibronectin in the intercellular space concomitant by increasing particle concentration may indicate an increase of cell migration/mobility.

5.
Int J Mol Sci ; 24(16)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37628858

RESUMEN

Mechanobiology comprises how cells perceive different mechanical stimuli and integrate them into a process called mechanotransduction; therefore, the related mechanosignaling cascades are generally important for biomedical research. The ongoing discovery of key molecules and the subsequent elucidation of their roles in mechanobiology are fundamental to understanding cell responses and tissue conditions, such as homeostasis, aging, senescence, wound healing, and cancer. Regarding the available literature on these topics, it becomes abundantly clear that in vitro cell systems from different species and tissues have been and are extremely valuable tools for enabling the discovery and functional elucidation of key mechanobiological players. Therefore, this review aims to discuss the significant contributions of in vitro cell systems to the identification and characterization of three such key players using the selected examples of yes-associated protein (YAP), its paralog transcriptional co-activator with a PDZ-binding motif (TAZ), and focal adhesion kinase (FAK) and their involvement in wound healing, cancer, aging, and senescence. In addition, the reader is given suggestions as to which future prospects emerge from the in vitro studies discussed herein and which research questions still remain open.


Asunto(s)
Neoplasias , Proteínas Señalizadoras YAP , Humanos , Proteína-Tirosina Quinasas de Adhesión Focal , Mecanotransducción Celular , Factores de Transcripción , Neoplasias/genética , Cicatrización de Heridas/genética , Biofisica
6.
Dent Mater ; 39(10): 922-928, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37640635

RESUMEN

OBJECTIVES: Amelogenins are clinically used in periodontal regeneration as main components of root surface modifying agents, even without specifically preventing the premature colonization of the healing tissue defect by means of a physical barrier membrane. The objective of this study was to investigate the effects of human amelogenin on the proliferation, migration, and morphology of Immortalized Human Oral Keratinocytes (iHOKs). METHODS: Immortalized Human Oral Keratinocytes were expanded in Keratinocyte Growth Medium-2 (KGM-2). Full-length recombinant amelogenin protein was diluted in KGM-2 in five concentrations (10 ng/ml, 100 ng/ml, 1.000 ng/ml, 5.000 ng/ml and 10.000 ng/ml). iHOKs were cultured in medium supplemented with the amelogenin dilutions. Samples without amelogenin served as control. Cell metabolism and cell proliferation together with cell migration were evaluated at day 7, 14, 21. RESULTS: At day 7, iHOKs treated with 10,000 ng/ml showed a significant decrease in keratinocytes´ proliferation. The metabolic activity at this timepoint was significantly lower for concentrations ≥ 1000 ng/ml. At days 14 and 21, both the addition of 5000 ng/ml and even more 10,000 ng/ml amelogenin reduced significantly the proliferation of keratinocytes. The effects on the metabolic activity for these timepoints were visible already with 100 ng/ml. Treatment of iHOKs with amelogenin of ≥ 1000 ng/ml led to inhibitory effects on cell migration already after 24 h. CONCLUSIONS: The full-length recombinant amelogenin has a significant biological impact on iHOKs. The increasing dose dependent inhibitory effects of amelogenin shown on iHOKs might explain the disruption of the apical migration of the junctional epithelium during regenerative healing. CLINICAL SIGNIFICANCE: Amelogenin, presents time- and dose-dependent inhibitory effects on the growth of keratinocytes, which might explain the biological rationale behind its application in periodontal regeneration.


Asunto(s)
Queratinocitos , Humanos , Amelogenina/farmacología , Movimiento Celular , Proliferación Celular
7.
Tissue Eng Part B Rev ; 29(5): 558-573, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37335062

RESUMEN

With the recent developments in tissue engineering, scientists have attempted to establish seed cells from different sources, create cell sheets through various technologies, implant them on scaffolds with various spatial structures, or load scaffolds with cytokines. These research results are very optimistic, bringing hope to the treatment of patients with uterine infertility. In this article, we reviewed articles related to the treatment of uterine infertility from the aspects of experimental treatment strategy, seed cells, scaffold application, and repair criteria so as to provide a basis for future research.

8.
Biomedicines ; 11(6)2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37371827

RESUMEN

Differential diagnosis of hypoglycemia in the non-diabetic adult patient is complex and comprises various diseases, including endogenous hyperinsulinism caused by functional ß-cell disorders. The latter is also designated as nesidioblastosis or non-insulinoma pancreatogenous hypoglycemia syndrome (NIPHS). Clinically, this rare disease presents with unspecific adrenergic and neuroglycopenic symptoms and is, therefore, often overlooked. A combination of careful clinical assessment, oral glucose tolerance testing, 72 h fasting, sectional and functional imaging, and invasive insulin measurements can lead to the correct diagnosis. Due to a lack of a pathophysiological understanding of the condition, conservative treatment options are limited and mostly ineffective. Therefore, nearly all patients currently undergo surgical resection of parts or the entire pancreas. Consequently, apart from faster diagnosis, more elaborate and less invasive treatment options are needed to relieve the patients from the dangerous and devastating symptoms. Based on a case of a 23-year-old man presenting with this disease in our department, we performed an extensive review of the medical literature dealing with this condition and herein presented a comprehensive discussion of this interesting disease, including all aspects from epidemiology to therapy.

9.
Biomedicines ; 11(6)2023 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-37371836

RESUMEN

Neurovegetative and autonomic symptoms are common presentations of various diseases, ranging from psychosomatic to severe organic disorders. A 23-year-old man presented with a history of recurrent presyncope, dizziness, and tachycardia. Repeated diagnostic work-up in various clinical settings could not identify any definite cause for approximately eight years. However, the incidental detection of postprandial and exercise-induced hypoglycemia was suggestive of an insulin-related disorder. A 72 h plasma glucose fasting test revealed endogenous hyperinsulinism. Upon imaging studies, no tumor mass potentially indicating insulinoma could be detected. 68Ga-DOTA-Exendin-4 PET/CT showed diffuse tracer enrichment throughout the whole pancreas. A subtotal pancreatectomy was performed, and the diagnosis of diffuse, adult-onset nesidioblastosis was established histopathologically. This corresponds to the clinical findings of a functional ß-cell disorder, also known as non-insulinoma pancreatogenous hypoglycemia syndrome (NIPHS). After nine months, the symptoms recurred, making complete pancreatectomy necessary. Postoperative laboratory evaluation exhibited no residual endogenous C-peptide production. This case illustrates the diagnostic challenges in patients presenting with unspecific, neurovegetative and autonomic symptoms with a severe and rare underlying cause.

10.
Materials (Basel) ; 16(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36769968

RESUMEN

The aim of this in vitro study was to investigate the effect of hydrogen peroxide (H2O2) on the surface properties of various zirconia-based dental implant materials and the response of human alveolar bone osteoblasts. For this purpose, discs of two zirconia-based materials with smooth and roughened surfaces were immersed in 20% H2O2 for two hours. Scanning electron and atomic force microscopy showed no topographic changes after H2O2-treatment. Contact angle measurements (1), X-ray photoelectron spectroscopy (2) and X-ray diffraction (3) indicated that H2O2-treated surfaces (1) increased in hydrophilicity (p < 0.05) and (2) on three surfaces the carbon content decreased (33-60%), while (3) the monoclinic phase increased on all surfaces. Immunofluorescence analysis of the cell area and DNA-quantification and alkaline phosphatase activity revealed no effect of H2O2-treatment on cell behavior. Proliferation activity was significantly higher on three of the four untreated surfaces, especially on the smooth surfaces (p < 0.05). Within the limitations of this study, it can be concluded that exposure of zirconia surfaces to 20% H2O2 for 2 h increases the wettability of the surfaces, but also seems to increase the monoclinic phase, especially on roughened surfaces, which can be considered detrimental to material stability. Moreover, the H2O2-treatment has no influence on osteoblast behavior.

11.
Nanomaterials (Basel) ; 12(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36500895

RESUMEN

As the use of zirconia-based nano-ceramics is rising in dentistry, the examination of possible biological effects caused by released nanoparticles on oral target tissues, such as bone, is gaining importance. The aim of this investigation was to identify a possible internalization of differently sized zirconia nanoparticles (ZrNP) into human osteoblasts applying Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS), and to examine whether ZrNP exposure affected the metabolic activity of the cells. Since ToF-SIMS has a low probing depth (about 5 nm), visualizing the ZrNP required the controlled erosion of the sample by oxygen bombardment. This procedure removed organic matter, uncovering the internalized ZrNP and leaving the hard particles practically unaffected. It was demonstrated that osteoblasts internalized ZrNP within 24 h in a size-dependent manner. Regarding the cellular metabolic activity, metabolization of alamarBlue by osteoblasts revealed a size- and time-dependent unfavorable effect of ZrNP, with the smallest ZrNP exerting the most pronounced effect. These findings point to different uptake efficiencies of the differently sized ZrNP by human osteoblasts. Furthermore, it was proven that ToF-SIMS is a powerful technique for the detection of zirconia-based nano/microparticles that can be applied for the cell-based validation of clinically relevant materials at the nano/micro scale.

12.
Cells ; 11(20)2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36291072

RESUMEN

Human dental pulp stem cells (hDPSCs) are promising for oral/craniofacial regeneration, but their purification and characterization is not yet standardized. hDPSCs from three donors were purified by magnetic activated cell sorting (MACS)-assisted STRO-1-positive cell enrichment (+), colony derivation (c), or a combination of both (c/+). Immunophenotype, clonogenicity, stemness marker expression, senescence, and proliferation were analyzed. Multilineage differentiation was assessed by qPCR, immunohistochemistry, and extracellular matrix mineralization. To confirm the credibility of the results, repeated measures analysis and post hoc p-value adjustment were applied. All hDPSC fractions expressed STRO-1 and were similar for several surface markers, while their clonogenicity and expression of CD10/44/105/146, and 166 varied with the purification method. (+) cells proliferated significantly faster than (c/+), while (c) showed the highest increase in metabolic activity. Colony formation was most efficient in (+) cells, which also exhibited the lowest cellular senescence. All hDPSCs produced mineralized extracellular matrix. Regarding osteogenic induction, (c/+) revealed a significant increase in mRNA expression of COL5A1 and COL6A1, while osteogenic marker genes were detected at varying levels. (c/+) were the only population missing BDNF gene transcription increase during neurogenic induction. All hDPSCs were able to differentiate into chondrocytes. In summary, the three hDPSCs populations showed differences in phenotype, stemness, proliferation, and differentiation capacity. The data suggest that STRO-1-positive cell enrichment is the optimal choice for hDPSCs purification to maintain hDPSCs stemness. Furthermore, an (immuno) phenotypic characterization is the minimum requirement for quality control in hDPSCs studies.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Células Madre , Humanos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proliferación Celular , Estándares de Referencia , ARN Mensajero/metabolismo , Pulpa Dental
13.
Front Bioeng Biotechnol ; 10: 918866, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36246375

RESUMEN

In oral and maxillofacial bone reconstruction, autografts from the iliac crest represent the gold standard due to their superior clinical performance, compared to autografts derived from other extraoral regions. Thus, the aim of our study was to identify putative differences between osteoblasts derived from alveolar (hOB-A) and iliac crest (hOB-IC) bone of the same donor (nine donors) by means of their molecular properties in 2D and 3D culture. We thereby focused on the gene expression of biomarkers involved in osteogenic differentiation, matrix formation and osteoclast modulation. Furthermore, we examined the transcriptional response to Vit.D3 in hOB-A and hOB-IC. Our results revealed different modulation modes of the biomarker expression in osteoblasts, namely cell origin/bone entity-dependent, and culture configuration- and/or time-dependent modulations. SEMA3A, SPP1, BGLAP and PHEX demonstrated the strongest dependence on cell origin. With respect to Vit.D3-effects, BGLAP, SPP1 and ALPL displayed the highest Vit.D3-responsiveness. In this context we demonstrated that the transcriptional Vit.D3-response concerning SPP1 and ALPL in human osteoblasts depended on the cell origin. The results indicate a higher bone remodeling activity of iliac crest than alveolar osteoblasts and support the growing evidence that a high osteoclast activity at the host-/donor bone interface may support graft integration.

14.
Pharmaceutics ; 14(6)2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35745858

RESUMEN

Periodontal diseases affect millions of people worldwide and can result in tooth loss. Regenerative treatment options for clinical use are thus needed. We aimed at developing new nonwoven-based scaffolds for periodontal tissue engineering. Nonwovens of 16% gelatin/5% hydroxyapatite were produced by electrospinning and in situ glyoxal cross-linking. In a subset of scaffolds, additional porosity was incorporated via extractable polyethylene glycol fibers. Cell colonization and penetration by human mesenchymal stem cells (hMSCs), periodontal ligament fibroblasts (PDLFs), or cocultures of both were visualized by scanning electron microscopy and 4',6-diamidin-2-phenylindole (DAPI) staining. Metabolic activity was assessed via Alamar Blue® staining. Cell type and differentiation were analyzed by immunocytochemical staining of Oct4, osteopontin, and periostin. The electrospun nonwovens were efficiently populated by both hMSCs and PDLFs, while scaffolds with additional porosity harbored significantly more cells. The metabolic activity was higher for cocultures of hMSCs and PDLFs, or for PDLF-seeded scaffolds. Periostin and osteopontin expression was more pronounced in cocultures of hMSCs and PDLFs, whereas Oct4 staining was limited to hMSCs. These novel in situ-cross-linked electrospun nonwoven scaffolds allow for efficient adhesion and survival of hMSCs and PDLFs. Coordinated expression of differentiation markers was observed, which rendered this platform an interesting candidate for periodontal tissue engineering.

15.
Int J Mol Sci ; 23(9)2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35563679

RESUMEN

Oral diseases such as gingivitis, periodontitis, and oral cancer affect millions of people worldwide. Much research has been conducted to understand the pathogenetic mechanisms of these diseases and translate this knowledge into therapeutics. This review aims to take the reader on a journey from the initial molecular discoveries to complex regenerative issues in oral medicine. For this, a semi-systematic literature search was carried out in Medline and Web of Science databases to retrieve the primary literature describing oral cell models and biomaterial applications in oral regenerative medicine. First, an in vitro cell model of gingival keratinocytes is discussed, which illustrates patho- and physiologic principles in the context of oral epithelial homeostasis and carcinogenesis and represents a cellular tool to understand biomaterial-based approaches for periodontal tissue regeneration. Consequently, a layered gradient nonwoven (LGN) is described, which demonstrates that the key features of biomaterials serve as candidates for oral tissue regeneration. LGN supports proper tissue formation and obeys the important principles for molecular mechanotransduction. Furthermore, current biomaterial-based tissue regeneration trends, including polymer modifications, cell-based treatments, antimicrobial peptides and optogenetics, are introduced to represent the full spectrum of current approaches to oral disease mitigation and prevention. Altogether, this review is a foray through established and new concepts in oral regenerative medicine and illustrates the process of knowledge translation from basic molecular and cell biological research to future clinical applications.


Asunto(s)
Mecanotransducción Celular , Ingeniería de Tejidos , Materiales Biocompatibles/farmacología , Humanos , Periodoncio/fisiología , Medicina Regenerativa
16.
Sci Rep ; 12(1): 7391, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35513701

RESUMEN

Extrusion-based printing enables simplified and economic manufacturing of surgical guides for oral implant placement. Therefore, the cytotoxicity of a biocopolyester (BE) and a polypropylene (PP), intended for the fused filament fabrication of surgical guides was evaluated. For comparison, a medically certified resin based on methacrylic esters (ME) was printed by stereolithography (n = 18 each group). Human gingival keratinocytes (HGK) were exposed to eluates of the tested materials and an impedance measurement and a tetrazolium assay (MTT) were performed. Modulations in gene expression were analyzed by quantitative PCR. One-way ANOVA with post-hoc Tukey tests were applied. None of the materials exceeded the threshold for cytotoxicity (< 70% viability in MTT) according to ISO 10993-5:2009. The impedance-based cell indices for PP and BE, reflecting cell proliferation, showed little deviations from the control, while ME caused a reduction of up to 45% after 72 h. PCR analysis after 72 h revealed only marginal modulations caused by BE while PP induced a down-regulation of genes encoding for inflammation and apoptosis (p < 0.05). In contrast, the 72 h ME eluate caused an up-regulation of these genes (p < 0.01). All evaluated materials can be considered biocompatible in vitro for short-term application. However, long-term contact to ME might induce (pro-)apoptotic/(pro-)inflammatory responses in HGK.


Asunto(s)
Polímeros , Estereolitografía , Encía , Humanos , Queratinocitos , Polipropilenos/toxicidad
17.
Biomed Mater ; 17(1)2021 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-34808608

RESUMEN

Early angiogenesis is one of the key challenges in tissue regeneration. Crosslinking mode and fiber diameter are critical factors to affect the adhesion and proliferation of cells. However, whether and how these two factors affect early angiogenesis remain largely unknown. To address the issue, the optimal crosslinking mode and fiber diameter of gelatin fiber membrane for early angiogenesisin vivoandin vitrowere explored in this work. Compared with the post crosslinked gelatin fiber membrane with the same fiber diameter, the 700 nm diameterin situcrosslinked gelatin fiber membrane was found to have smaller roughness (230.67 ± 19 nm) and stronger hydrophilicity (54.77° ± 1.2°), which were suitable for cell growth and adhesion. Moreover, thein situcrosslinked gelatin fiber membrane with a fiber diameter of 1000 nm had significant advantages in early angiogenesis over the two with fiber diameters of 500 and 700 nm by up-regulating the expression of Ang1, VEGF, and integrin-ß1. Our findings indicated that thein situcrosslinked gelatin fiber membrane with a diameter of 1000 nm might solve the problem of insufficient blood supply in the early stage of soft tissue regeneration and has broad clinical application prospects in promoting tissue regeneration.


Asunto(s)
Gelatina , Nanoestructuras , Proliferación Celular , Gelatina/química , Ingeniería de Tejidos , Andamios del Tejido/química
18.
Expert Rev Mol Med ; 23: e14, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34702419

RESUMEN

Articular cartilage consists of hyaline cartilage, is a major constituent of the human musculoskeletal system and has critical functions in frictionless joint movement and articular homoeostasis. Osteoarthritis (OA) is an inflammatory disease of articular cartilage, which promotes joint degeneration. Although it affects millions of people, there are no satisfying therapies that address this disease at the molecular level. Therefore, tissue regeneration approaches aim at modifying chondrocyte biology to mitigate the consequences of OA. This requires appropriate biochemical and biophysical stimulation of cells. Regarding the latter, mechanotransduction of chondrocytes and their precursor cells has become increasingly important over the last few decades. Mechanotransduction is the transformation of external biophysical stimuli into intracellular biochemical signals, involving sensor molecules at the cell surface and intracellular signalling molecules, so-called mechano-sensors and -transducers. These signalling events determine cell behaviour. Mechanotransducing ion channels and gap junctions additionally govern chondrocyte physiology. It is of great scientific and medical interest to induce a specific cell behaviour by controlling these mechanotransduction pathways and to translate this knowledge into regenerative clinical therapies. This review therefore focuses on the mechanotransduction properties of integrins, cadherins and ion channels in cartilaginous tissues to provide perspectives for cartilage regeneration.


Asunto(s)
Cartílago Articular , Integrinas , Cadherinas , Condrocitos , Humanos , Integrinas/genética , Mecanotransducción Celular
19.
Int J Mol Sci ; 22(18)2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34575938

RESUMEN

By employing an innovative biohybrid membrane, the present study aimed at elucidating the mechanistic role of the focal adhesion kinase (FAK) in epithelial morphogenesis in vitro over 4, 7, and 10 days. The consequences of siRNA-mediated FAK knockdown on epithelial morphogenesis were monitored by quantifying cell layers and detecting the expression of biomarkers of epithelial differentiation and homeostasis. Histologic examination of FAK-depleted samples showed a significant increase in cell layers resembling epithelial hyperplasia. Semiquantitative fluorescence imaging (SQFI) revealed tissue homeostatic disturbances by significantly increased involucrin expression over time, persistence of yes-associated protein (YAP) and an increase of keratin (K) 1 at day 4. The dysbalanced involucrin pattern was underscored by ROCK-IISer1366 activity at day 7 and 10. SQFI data were confirmed by quantitative PCR and Western blot analysis, thereby corroborating the FAK shutdown-related expression changes. The artificial FAK shutdown was also associated with a significantly higher expression of filaggrin at day 10, sustained keratinocyte proliferation, and the dysregulated expression of K19 and vimentin. These siRNA-induced consequences indicate the mechanistic role of FAK in epithelial morphogenesis by simultaneously considering prospective biomaterial-based epithelial regenerative approaches.


Asunto(s)
Proteínas de Ciclo Celular/genética , Células Epiteliales/citología , Proteína-Tirosina Quinasas de Adhesión Focal/genética , Hiperplasia Epitelial Focal/genética , Morfogénesis/genética , Factores de Transcripción/genética , Biomarcadores/metabolismo , Células Epiteliales/metabolismo , Proteínas Filagrina , Proteína-Tirosina Quinasas de Adhesión Focal/antagonistas & inhibidores , Hiperplasia Epitelial Focal/patología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regeneración Tisular Dirigida , Humanos , Proteínas de Filamentos Intermediarios/genética , Queratina-1/genética , Queratinocitos/efectos de los fármacos , Precursores de Proteínas/genética , ARN Interferente Pequeño/farmacología
20.
Sci Rep ; 11(1): 17302, 2021 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-34453071

RESUMEN

Plasma-treatment of oral implant biomaterials prior to clinical insertion is envisaged as a potential surface modification method for enhanced implant healing. To investigate a putative effect of plasma-functionalized implant biomaterials on oral tissue cells, this investigation examined the response of alveolar bone osteoblasts and gingival fibroblasts to clinically established zirconia- and titanium-based implant surfaces for bone and soft tissue integration. The biomaterials were either functionalized with oxygen-plasma in a plasma-cleaner or left untreated as controls, and were characterized in terms of topography and wettability. For the biological evaluation, the cell adhesion, morphogenesis, metabolic activity and proliferation were examined, since these parameters are closely interconnected during cell-biomaterial interaction. The results revealed that plasma-functionalization increased implant surface wettability. The magnitude of this effect thereby depended on surface topography parameters and initial wettability of the biomaterials. Concerning the cell response, plasma-functionalization of smooth surfaces affected initial fibroblast morphogenesis, whereas osteoblast morphology on rough surfaces was mainly influenced by topography. The plasma- and topography-induced differential cell morphologies were however not strong enough to trigger a change in proliferation behaviour. Hence, the results indicate that oxygen plasma-functionalization represents a possible cytocompatible implant surface modification method which can be applied for tailoring implant surface wettability.


Asunto(s)
Materiales Biocompatibles Revestidos/química , Materiales Dentales/química , Oxígeno/química , Gases em Plasma/química , Titanio/química , Circonio/química , Adhesión Celular , Proliferación Celular , Materiales Biocompatibles Revestidos/metabolismo , Materiales Dentales/metabolismo , Fibroblastos/citología , Encía , Humanos , Osteoblastos/citología , Gases em Plasma/metabolismo , Prótesis e Implantes , Propiedades de Superficie , Humectabilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...