Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1358312, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38525145

RESUMEN

The transition from germinating seeds to emerging seedlings is one of the most vulnerable plant life cycle stages. Heteromorphic diaspores (seed and fruit dispersal units) are an adaptive bet-hedging strategy to cope with spatiotemporally variable environments. While the roles and mechanisms of seedling traits have been studied in monomorphic species, which produce one type of diaspore, very little is known about seedlings in heteromorphic species. Using the dimorphic diaspore model Aethionema arabicum (Brassicaceae), we identified contrasting mechanisms in the germination responses to different temperatures of the mucilaginous seeds (M+ seed morphs), the dispersed indehiscent fruits (IND fruit morphs), and the bare non-mucilaginous M- seeds obtained from IND fruits by pericarp (fruit coat) removal. What follows the completion of germination is the pre-emergence seedling growth phase, which we investigated by comparative growth assays of early seedlings derived from the M+ seeds, bare M- seeds, and IND fruits. The dimorphic seedlings derived from M+ and M- seeds did not differ in their responses to ambient temperature and water potential. The phenotype of seedlings derived from IND fruits differed in that they had bent hypocotyls and their shoot and root growth was slower, but the biomechanical hypocotyl properties of 15-day-old seedlings did not differ between seedlings derived from germinated M+ seeds, M- seeds, or IND fruits. Comparison of the transcriptomes of the natural dimorphic diaspores, M+ seeds and IND fruits, identified 2,682 differentially expressed genes (DEGs) during late germination. During the subsequent 3 days of seedling pre-emergence growth, the number of DEGs was reduced 10-fold to 277 root DEGs and 16-fold to 164 shoot DEGs. Among the DEGs in early seedlings were hormonal regulators, in particular for auxin, ethylene, and gibberellins. Furthermore, DEGs were identified for water and ion transporters, nitrate transporter and assimilation enzymes, and cell wall remodeling protein genes encoding enzymes targeting xyloglucan and pectin. We conclude that the transcriptomes of seedlings derived from the dimorphic diaspores, M+ seeds and IND fruits, undergo transcriptional resetting during the post-germination pre-emergence growth transition phase from germinated diaspores to growing seedlings.

2.
Plant Cell ; 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38513609

RESUMEN

Plants in habitats with unpredictable conditions often have diversified bet-hedging strategies that ensure fitness over a wider range of variable environmental factors. A striking example is the diaspore (seed and fruit) heteromorphism that evolved to maximize species survival in Aethionema arabicum (Brassicaceae) in which external and endogenous triggers allow the production of two distinct diaspores on the same plant. Using this dimorphic diaspore model, we identified contrasting molecular, biophysical, and ecophysiological mechanisms in the germination responses to different temperatures of the mucilaginous seeds (M+ seed morphs), the dispersed indehiscent fruits (IND fruit morphs), and the bare non-mucilaginous M- seeds obtained by pericarp (fruit coat) removal from IND fruits. Large-scale comparative transcriptome and hormone analyses of M+ seeds, IND fruits, and M- seeds provided comprehensive datasets for their distinct thermal responses. Morph-specific differences in co-expressed gene modules in seeds, as well as in seed and pericarp hormone contents, identified a role of the IND pericarp in imposing coat dormancy by generating hypoxia affecting ABA sensitivity. This involved expression of morph-specific transcription factors, hypoxia response and cell wall-remodeling genes, as well as altered abscisic acid (ABA) metabolism, transport, and signaling. Parental temperature affected ABA contents and ABA-related gene expression and altered IND pericarp biomechanical properties. Elucidating the molecular framework underlying the diaspore heteromorphism can provide insight into developmental responses to globally changing temperatures.

3.
Planta ; 259(4): 75, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409565

RESUMEN

MAIN CONCLUSION: Seed priming with gas plasma-activated water results in an increased ageing resilience in Eragrostis tef grains compared to a conventional hydropriming protocol. Tef (Eragrostis tef) is a cereal grass and a major staple crop of Ethiopia and Eritrea. Despite its significant importance in terms of production, consumption, and cash crop value, tef has been understudied and its productivity is low. In this study, tef grains have undergone different priming treatments to enhance seed vigour and seedling performance. A conventional hydropriming and a novel additive priming technology with gas plasma-activated water (GPAW) have been used and tef grains were then subjected to germination performance assays and accelerated ageing. Tef priming increases the germination speed and vigour of the grains. Priming with GPAW retained the seed storage potential after ageing, therefore, presenting an innovative environmental-friendly seed technology with the prospect to address variable weather conditions and ultimately food insecurity. Seed technology opens new possibilities to increase productivity of tef crop farming to achieve a secure and resilient tef food system and economic growth in Ethiopia by sustainable intensification of agriculture beyond breeding.


Asunto(s)
Eragrostis , Etiopía , Fitomejoramiento , Semillas , Grano Comestible
4.
Int J Mol Sci ; 23(12)2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35743152

RESUMEN

Seeds sense temperature, nutrient levels and light conditions to inform decision making on the timing of germination. Limited light availability for photoblastic species results in irregular germination timing and losses of population germination percentage. Seed industries are therefore looking for interventions to mitigate this risk. A growing area of research is water treated with gas plasma (GPAW), in which the formed solution is a complex consisting of reactive oxygen and nitrogen species. Gas plasma technology is widely used for sterilisation and is an emerging technology in the food processing industry. The use of the GPAW on seeds has previously led to an increase in germination performance, often attributed to bolstered antioxidant defence mechanisms. However, there is a limited understanding of how the solution may influence the mechanisms that govern seed dormancy and whether photoreceptor-driven germination mechanisms are affected. In our work, we studied how GPAW can influence the mechanisms that govern photo-dependent dormancy, isolating the effects at low fluence response (LFR) and very low fluence response (VLFR). The two defined light intensity thresholds affect germination through different phytochrome photoreceptors, PHYB and PHYA, respectively; we found that GPAW showed a significant increase in population germination percentage under VLFR and further described how each treatment affects key physiological regulators.


Asunto(s)
Arabidopsis , Nicotiana , Arabidopsis/fisiología , Germinación/fisiología , Latencia en las Plantas/fisiología , Semillas/fisiología , Agua
5.
J Exp Bot ; 73(12): 4065-4078, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35427417

RESUMEN

Developing innovative agri-technologies is essential for the sustainable intensification of global food production. Seed dormancy is an adaptive trait which defines the environmental conditions in which the seed is able to germinate. Dormancy release requires sensing and integration of multiple environmental signals, a complex process which may be mimicked by seed treatment technologies. Here, we reveal molecular mechanisms by which non-thermal (cold) atmospheric gas plasma-activated water (GPAW) releases the physiological seed dormancy of Arabidopsis thaliana. GPAW triggered dormancy release by synergistic interaction between plasma-generated reactive chemical species (NO3-, H2O2, ·NO, and ·OH) and multiple signalling pathways targeting gibberellin and abscisic acid (ABA) metabolism and the expression of downstream cell wall-remodelling genes. Direct chemical action of GPAW on cell walls resulted in premature biomechanical endosperm weakening. The germination responses of dormancy signalling (nlp8, prt6, and dog1) and ABA metabolism (cyp707a2) mutants varied with GPAW composition. GPAW removes seed dormancy blocks by triggering multiple molecular signalling pathways combined with direct chemical tissue weakening to permit seed germination. Gas plasma technologies therefore improve seed quality by mimicking permissive environments in which sensing and integration of multiple signals lead to dormancy release and germination.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Germinación/fisiología , Peróxido de Hidrógeno/metabolismo , Latencia en las Plantas/fisiología , Semillas/metabolismo , Tecnología , Agua/metabolismo
7.
Plant Cell Environ ; 45(4): 1315-1332, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35064681

RESUMEN

The dynamic behaviour of seeds in soil seed banks depends on their ability to act as sophisticated environmental sensors to adjust their sensitivity thresholds for germination by dormancy mechanisms. Here we show that prolonged incubation of sugar beet fruits at low temperature (chilling at 5°C, generally known to release seed dormancy of many species) can induce secondary nondeep physiological dormancy of an apparently nondormant crop species. The physiological and biophysical mechanisms underpinning this cold-induced secondary dormancy include the chilling-induced accumulation of abscisic acid in the seeds, a reduction in the embryo growth potential and a block in weakening of the endosperm covering the embryonic root. Transcriptome analysis revealed distinct gene expression patterns in the different temperature regimes and upon secondary dormancy induction and maintenance. The chilling caused reduced expression of cell wall remodelling protein genes required for embryo cell elongation growth and endosperm weakening, as well as increased expression of seed maturation genes, such as for late embryogenesis abundant proteins. A model integrating the hormonal signalling and master regulator expression with the temperature-control of seed dormancy and maturation programmes is proposed. The revealed mechanisms of the cold-induced secondary dormancy are important for climate-smart agriculture and food security.


Asunto(s)
Beta vulgaris , Ácido Abscísico/metabolismo , Beta vulgaris/genética , Germinación/fisiología , Latencia en las Plantas/genética , Semillas/fisiología
8.
Plant J ; 108(4): 1020-1036, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34510583

RESUMEN

Underdeveloped (small) embryos embedded in abundant endosperm tissue, and thus having morphological dormancy (MD) or morphophysiological dormancy (MPD), are considered to be the ancestral state in seed dormancy evolution. This trait is retained in the Apiaceae family, which provides excellent model systems for investigating the underpinning mechanisms. We investigated Apium graveolens (celery) MD by combined innovative imaging and embryo growth assays with the quantification of hormone metabolism, as well as the analysis of hormone and cell-wall related gene expression. The integrated experimental results demonstrated that embryo growth occurred inside imbibed celery fruits in association with endosperm degradation, and that a critical embryo size was required for radicle emergence. The regulation of these processes depends on gene expression leading to gibberellin and indole-3-acetic acid (IAA) production by the embryo and on crosstalk between the fruit compartments. ABA degradation associated with distinct spatiotemporal patterns in ABA sensitivity control embryo growth, endosperm breakdown and radicle emergence. This complex interaction between gibberellins, IAA and ABA metabolism, and changes in the tissue-specific sensitivities to these hormones is distinct from non-MD seeds. We conclude that the embryo growth to reach the critical size and the associated endosperm breakdown inside MD fruits constitute a unique germination programme.


Asunto(s)
Apium/fisiología , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Semillas/fisiología , Apium/genética , Apium/crecimiento & desarrollo , Transporte Biológico , Endospermo/crecimiento & desarrollo , Endospermo/fisiología , Regulación de la Expresión Génica de las Plantas , Germinación , Modelos Biológicos , Latencia en las Plantas , Semillas/genética , Semillas/crecimiento & desarrollo
9.
Plant J ; 107(1): 166-181, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33945185

RESUMEN

The developmental transition from a fertilized ovule to a dispersed diaspore (seed or fruit) involves complex differentiation processes of the ovule's integuments leading to the diversity in mature seed coat structures in angiosperms. In this study, comparative imaging and transcriptome analysis were combined to investigate the morph-specific developmental differences during outer seed coat differentiation and mucilage production in Aethionema arabicum, the Brassicaceae model for diaspore dimorphism. One of the intriguing adaptations of this species is the production and dispersal of morphologically distinct, mucilaginous and non-mucilaginous diaspores from the same plant (dimorphism). The dehiscent fruit morph programme producing multiple mucilaginous seed diaspores was used as the default trait combination, similar to Arabidopsis thaliana, and was compared with the indehiscent fruit morph programme leading to non-mucilaginous diaspores. Synchrotron-based radiation X-ray tomographic microscopy revealed a co-ordinated framework of morph-specific early changes in internal anatomy of developing A. arabicum gynoecia including seed abortion in the indehiscent programme and mucilage production by the mucilaginous seed coat. The associated comparative analysis of the gene expression patterns revealed that the unique seed coat dimorphism of Ae. arabicum provides an excellent model system for comparative study of the control of epidermal cell differentiation and mucilage biosynthesis by the mucilage transcription factor cascade and their downstream cell wall and mucilage remodelling genes. Elucidating the underlying molecular framework of the dimorphic diaspore syndrome is key to understanding differential regulation of bet-hedging survival strategies in challenging environments, timely in the face of global climatic change.


Asunto(s)
Brassicaceae/crecimiento & desarrollo , Frutas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Semillas/crecimiento & desarrollo , Factores de Transcripción/genética , Ácido Abscísico/metabolismo , Brassicaceae/citología , Brassicaceae/fisiología , Diferenciación Celular , Frutas/genética , Leucina Zippers , Células Vegetales , Proteínas de Plantas/genética , Semillas/genética , Semillas/metabolismo , Análisis de Secuencia de ARN
10.
New Phytol ; 229(4): 2179-2191, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32970853

RESUMEN

How the biophysical properties of overlaying tissues control growth, such as the embryonic root (radicle) during seed germination, is a fundamental question. In eudicot seeds the endosperm surrounding the radicle confers coat dormancy and controls germination responses through modulation of its cell wall mechanical properties. Far less is known for grass caryopses that differ in tissue morphology. Here we report that the coleorhiza, a sheath-like organ that surrounds the radicle in grass embryos, performs the same role in the grass weed Avena fatua (common wild oat). We combined innovative biomechanical techniques, tissue ablation, microscopy, tissue-specific gene and enzyme activity expression with the analysis of hormones and oligosaccharides. The combined experimental work demonstrates that in grass caryopses the coleorhiza indeed controls germination for which we provide direct biomechanical evidence. We show that the coleorhiza becomes reinforced during dormancy maintenance and weakened during germination. Xyloglucan endotransglycosylases/hydrolases may have a role in coleorhiza reinforcement through cell wall remodelling to confer coat dormancy. The control of germination by coleorhiza-enforced dormancy in grasses is an example of the convergent evolution of mechanical restraint by overlaying tissues.


Asunto(s)
Germinación , Latencia en las Plantas , Avena , Endospermo , Semillas
11.
Planta ; 251(6): 105, 2020 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-32417974

RESUMEN

MAIN CONCLUSION: Storage at an elevated partial pressure of oxygen and classical artificial ageing cause a rapid loss of seed viability of short-lived vegetable seeds. Prolonging seed longevity during storage is of major importance for gene banks and the horticultural industry. Slowing down biochemical deterioration, including oxygen-dependent deterioration caused by oxidative processes can boost longevity. This can be affected by the seed structure and the oxygen permeability of seed coat layers. Classical artificial seed ageing assays are used to estimate seed 'shelf-life' by mimicking seed ageing via incubating seeds at elevated temperature and elevated relative humidity (causing elevated equilibrium seed moisture content). In this study, we show that seed lots of vegetable Allium species are short-lived both during dry storage for several months and in seed ageing assays at elevated seed moisture levels. Micromorphological analysis of the Allium cepa x Allium fistulosum salad onion seed identified intact seed coat and endosperm layers. Allium seeds equilibrated at 70% relative humidity were used to investigate seed ageing at tenfold elevated partial pressure of oxygen (high pO2) at room temperature (22 ºC) in comparison to classical artificial ageing at elevated temperature (42 ºC). Our results reveal that 30 days high pO2 treatment causes a rapid loss of seed viability which quantitatively corresponded to the seed viability loss observed by ~ 7 days classical artificial ageing. A similar number of normal seedlings develop from the germinating (viable) proportion of seeds in the population. Many long-lived seeds first exhibit a seed vigour loss, evident from a reduced germination speed, preceding the loss in seed viability. In contrast to this, seed ageing of our short-lived Allium vegetable seems to be characterised by a rapid loss in seed viability.


Asunto(s)
Allium/fisiología , Oxígeno/química , Semillas/fisiología , Germinación , Presión Parcial , Plantones/fisiología , Verduras
12.
Planta ; 250(5): 1717-1729, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31414204

RESUMEN

MAIN CONCLUSION: Seed-processing technologies such as polishing and washing enhance crop seed quality by limited removal of the outer layers and by leaching. Combined, this removes chemical compounds that inhibit germination. Industrial processing to deliver high-quality commercial seed includes removing chemical inhibitors of germination, and is essential to produce fresh sprouts, achieve vigorous crop establishment, and high yield potential in the field. Sugar beet (Beta vulgaris subsp. vulgaris var. altissima Doell.), the main sugar source of the temperate agricultural zone, routinely undergoes several processing steps during seed production to improve germination performance and seedling growth. Germination assays and seedling phenotyping was carried out on unprocessed, and processed (polished and washed) sugar beet fruits. Pericarp-derived solutes, known to inhibit germination, were tested in germination assays and their osmolality and conductivity assessed (ions). Abscisic acid (ABA) and ABA metabolites were quantified in both the true seed and pericarp tissue using UPLC-ESI(+)-MS/MS. Physical changes in the pericarp structures were assessed using scanning electron microscopy (SEM). We found that polishing and washing of the sugar beet fruits both had a positive effect on germination performance and seedling phenotype, and when combined, this positive effect was stronger. The mechanical action of polishing removed the outer pericarp (fruit coat) tissue (parenchyma), leaving the inner tissue (sclerenchyma) unaltered, as revealed by SEM. Polishing as well as washing removed germination inhibitors from the pericarp, specifically, ABA, ABA metabolites, and ions. Understanding the biochemistry underpinning the effectiveness of these processing treatments is key to driving further innovations in commercial seed quality.


Asunto(s)
Ácido Abscísico/metabolismo , Beta vulgaris/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/metabolismo , Beta vulgaris/fisiología , Bioquímica , Germinación , Semillas/crecimiento & desarrollo , Semillas/fisiología , Espectrometría de Masas en Tándem
13.
New Phytol ; 221(3): 1434-1446, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30230555

RESUMEN

Heteromorphic diaspores (fruits and seeds) are an adaptive bet-hedging strategy to cope with spatiotemporally variable environments, particularly fluctuations in favourable temperatures and unpredictable precipitation regimes in arid climates. We conducted comparative analyses of the biophysical and ecophysiological properties of the two distinct diaspores (mucilaginous seed (M+ ) vs indehiscent (IND) fruit) in the dimorphic annual Aethionema arabicum (Brassicaceae), linking fruit biomechanics, dispersal aerodynamics, pericarp-imposed dormancy, diaspore abscisic acid (ABA) concentration, and phenotypic plasticity of dimorphic diaspore production to its natural habitat and climate. Two very contrasting dispersal mechanisms of the A. arabicum dimorphic diaspores were revealed. Dehiscence of large fruits leads to the release of M+ seed diaspores, which adhere to substrata via seed coat mucilage, thereby preventing dispersal (antitelechory). IND fruit diaspores (containing nonmucilaginous seeds) disperse by wind or water currents, promoting dispersal (telechory) over a longer range. The pericarp properties confer enhanced dispersal ability and degree of dormancy on the IND fruit morph to support telechory, while the M+ seed morph supports antitelechory. Combined with the phenotypic plasticity to produce more IND fruit diaspores in colder temperatures, this constitutes a bet-hedging survival strategy to magnify the prevalence in response to selection pressures acting over hilly terrain.


Asunto(s)
Adaptación Fisiológica , Fenómenos Biofísicos , Brassicaceae/fisiología , Frutas/fisiología , Dispersión de Semillas/fisiología , Semillas/fisiología , Fenómenos Biomecánicos , Ecosistema , Germinación/fisiología , Suelo , Agua , Viento
14.
Curr Opin Genet Dev ; 51: 1-10, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29571069

RESUMEN

Distinct plant seed/fruit structures evolved to support reproduction and dispersal in distinct environments. Appropriate biomechanical properties and interactions of the various seed compartments are indispensable to plant survival. Most seeds are dispersed in a dry state generated during seed development/maturation for which novel aspects of endosperm-embryo interaction were discovered. The various layers covering the embryo of a mature seed define the patterns of water uptake during germination. Their biomechanical weakening together with embryo cell expansion is mediated by cell wall remodelling to facilitate radicle protrusion. Recent work with different species has revealed mechanisms underpinning specific embryo growth zones. Abiotic and biotic factors were shown to release different types of seed and fruit coat-mediated constraints to water uptake and germination.


Asunto(s)
Endospermo/genética , Desarrollo de la Planta/genética , Semillas/genética , Endospermo/crecimiento & desarrollo , Frutas/genética , Frutas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Semillas/crecimiento & desarrollo , Agua/metabolismo
15.
Nat Commun ; 8(1): 1868, 2017 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-29192192

RESUMEN

The biomechanical and ecophysiological properties of plant seed/fruit structures are fundamental to survival in distinct environments. Dispersal of fruits with hard pericarps (fruit coats) encasing seeds has evolved many times independently within taxa that have seed dispersal as their default strategy. The mechanisms by which the constraint of a hard pericarp determines germination timing in response to the environment are currently unknown. Here, we show that the hard pericarp of Lepidium didymum controls germination solely by a biomechanical mechanism. Mechanical dormancy is conferred by preventing full phase-II water uptake of the encased non-dormant seed. The lignified endocarp has biomechanically and morphologically distinct regions that serve as predetermined breaking zones. This pericarp-imposed mechanical dormancy is released by the activity of common fungi, which weaken these zones by degrading non-lignified pericarp cells. We propose that the hard pericarp with this biomechanical mechanism contributed to the global distribution of this species in distinct environments.


Asunto(s)
Ascomicetos/fisiología , Frutas/fisiología , Lepidium/fisiología , Latencia en las Plantas/fisiología , Semillas/fisiología , Fenómenos Biomecánicos , Cladosporium/fisiología , Código de Barras del ADN Taxonómico , Frutas/microbiología , Hongos , Germinación , Lepidium/microbiología , Micelio/fisiología , Dispersión de Semillas , Semillas/microbiología , Agua
16.
J R Soc Interface ; 14(126)2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28100826

RESUMEN

Millennia of continuous innovation have driven ever increasing efficiency in the milling process. Mechanically characterizing wheat grains and discerning the structure and function of the wheat bran layers can contribute to continuing innovation. We present novel shear force and puncture force testing regimes to characterize different wheat grain cultivars. The forces endured by wheat grains during the milling process can be quantified, enabling us to measure the impact of commonly applied grain pretreatments, such as microwave heating, extended tempering, enzyme and hormone treatments on grains of different 'hardness'. Using these methods, we demonstrate the importance of short tempering phases prior to milling and identify ways in which our methods can detect differences in the maximum force, energy and breaking behaviours of hard and soft grain types. We also demonstrate for the first time, endosperm weakening in wheat, through hormone stratification on single bran layers. The modern milling process is highly refined, meaning that small, cultivar specific, adjustments can result in large increases in downstream profits. We believe that methods such as these, which enable rapid testing of milling pretreatments and material properties can help to drive an innovation process that has been core to our industrial efforts since prehistory.


Asunto(s)
Grano Comestible/química , Manipulación de Alimentos , Microondas , Estrés Mecánico , Triticum/química
17.
J Exp Bot ; 68(4): 765-783, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27927995

RESUMEN

From a biomechanical perspective, the completion of seed (and fruit) germination depends on the balance of two opposing forces: the growth potential of the embryonic axis (radicle-hypocotyl growth zone) and the restraint of the seed-covering layers (endosperm, testa, and pericarp). The diverse seed tissues are composite materials which differ in their dynamic properties based on their distinct cell wall composition and water uptake capacities. The biomechanics of embryo cell growth during seed germination depend on irreversible cell wall loosening followed by water uptake due to the decreasing turgor, and this leads to embryo elongation and eventually radicle emergence. Endosperm weakening as a prerequisite for radicle emergence is a widespread phenomenon among angiosperms. Research into the biochemistry and biomechanics of endosperm weakening has demonstrated that the reduction in puncture force of a seed's micropylar endosperm is environmentally and hormonally regulated and involves tissue-specific expression of cell wall remodelling proteins such as expansins, diverse hydrolases, and the production of directly acting apoplastic reactive oxygen. The endosperm-weakening biomechanics and its underlying cell wall biochemistry differ between the micropylar (ME) and chalazal (CE) endosperm domains. In the ME, they involve cell wall loosening, cell separation, and programmed cell death to provide decreased and localized ME tissue resistance, autolysis, and finally the formation of an ME hole required for radicle emergence. Future work will further unravel the molecular mechanisms, environmental regulation, and evolution of the diverse biomechanical cell wall changes underpinning the control of germination by endosperm weakening.


Asunto(s)
Germinación/fisiología , Semillas/crecimiento & desarrollo , Fenómenos Biomecánicos/fisiología , Endospermo/fisiología , Semillas/fisiología
18.
Plant Physiol ; 172(3): 1691-1707, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27702842

RESUMEN

Understanding how plants cope with changing habitats is a timely and important topic in plant research. Phenotypic plasticity describes the capability of a genotype to produce different phenotypes when exposed to different environmental conditions. In contrast, the constant production of a set of distinct phenotypes by one genotype mediates bet hedging, a strategy that reduces the temporal variance in fitness at the expense of a lowered arithmetic mean fitness. Both phenomena are thought to represent important adaptation strategies to unstable environments. However, little is known about the underlying mechanisms of these phenomena, partly due to the lack of suitable model systems. We used phylogenetic and comparative analyses of fruit and seed anatomy, biomechanics, physiology, and environmental responses to study fruit and seed heteromorphism, a typical morphological basis of a bet-hedging strategy of plants, in the annual Brassicaceae species Aethionema arabicum Our results indicate that heteromorphism evolved twice within the Aethionemeae, including once for the monophyletic annual Aethionema clade. The dimorphism of Ae. arabicum is associated with several anatomic, biomechanical, gene expression, and physiological differences between the fruit and seed morphs. However, fruit ratios and numbers change in response to different environmental conditions. Therefore, the life-history strategy of Ae. arabicum appears to be a blend of bet hedging and plasticity. Together with the available genomic resources, our results pave the way to use this species in future studies intended to unravel the molecular control of heteromorphism and plasticity.


Asunto(s)
Brassicaceae/embriología , Frutas/embriología , Semillas/embriología , Brassicaceae/anatomía & histología , Brassicaceae/genética , Brassicaceae/ultraestructura , Regulación hacia Abajo/genética , Frutas/genética , Frutas/ultraestructura , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes del Desarrollo , Genes de Plantas , Germinación/genética , Modelos Biológicos , Fenotipo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Dispersión de Semillas , Semillas/genética , Semillas/ultraestructura , Homología de Secuencia de Aminoácido
19.
Proc Natl Acad Sci U S A ; 111(34): E3571-80, 2014 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-25114251

RESUMEN

Seed germination is an important life-cycle transition because it determines subsequent plant survival and reproductive success. To detect optimal spatiotemporal conditions for germination, seeds act as sophisticated environmental sensors integrating information such as ambient temperature. Here we show that the delay of germination 1 (DOG1) gene, known for providing dormancy adaptation to distinct environments, determines the optimal temperature for seed germination. By reciprocal gene-swapping experiments between Brassicaceae species we show that the DOG1-mediated dormancy mechanism is conserved. Biomechanical analyses show that this mechanism regulates the material properties of the endosperm, a seed tissue layer acting as germination barrier to control coat dormancy. We found that DOG1 inhibits the expression of gibberellin (GA)-regulated genes encoding cell-wall remodeling proteins in a temperature-dependent manner. Furthermore we demonstrate that DOG1 causes temperature-dependent alterations in the seed GA metabolism. These alterations in hormone metabolism are brought about by the temperature-dependent differential expression of genes encoding key enzymes of the GA biosynthetic pathway. These effects of DOG1 lead to a temperature-dependent control of endosperm weakening and determine the optimal temperature for germination. The conserved DOG1-mediated coat-dormancy mechanism provides a highly adaptable temperature-sensing mechanism to control the timing of germination.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Lepidium sativum/crecimiento & desarrollo , Lepidium sativum/genética , Arabidopsis/fisiología , Fenómenos Biomecánicos , Secuencia Conservada , Diploidia , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Germinación/genética , Germinación/fisiología , Giberelinas/metabolismo , Lepidium sativum/fisiología , Datos de Secuencia Molecular , Mutación , Latencia en las Plantas/genética , Latencia en las Plantas/fisiología , Plantas Modificadas Genéticamente , Semillas/crecimiento & desarrollo , Temperatura
20.
Plant Physiol ; 160(3): 1551-66, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22961130

RESUMEN

In some species, a crucial role has been demonstrated for the seed endosperm during germination. The endosperm has been shown to integrate environmental cues with hormonal networks that underpin dormancy and seed germination, a process that involves the action of cell wall remodeling enzymes (CWREs). Here, we examine the cell wall architectures of the endosperms of two related Brassicaceae, Arabidopsis (Arabidopsis thaliana) and the close relative Lepidium (Lepidium sativum), and that of the Solanaceous species, tobacco (Nicotiana tabacum). The Brassicaceae species have a similar cell wall architecture that is rich in pectic homogalacturonan, arabinan, and xyloglucan. Distinctive features of the tobacco endosperm that are absent in the Brassicaceae representatives are major tissue asymmetries in cell wall structural components that reflect the future site of radicle emergence and abundant heteromannan. Cell wall architecture of the micropylar endosperm of tobacco seeds has structural components similar to those seen in Arabidopsis and Lepidium endosperms. In situ and biomechanical analyses were used to study changes in endosperms during seed germination and suggest a role for mannan degradation in tobacco. In the case of the Brassicaceae representatives, the structurally homogeneous cell walls of the endosperm can be acted on by spatially regulated CWRE expression. Genetic manipulations of cell wall components present in the Arabidopsis seed endosperm demonstrate the impact of cell wall architectural changes on germination kinetics.


Asunto(s)
Brassicaceae/anatomía & histología , Brassicaceae/citología , Pared Celular/química , Endospermo/anatomía & histología , Endospermo/citología , Solanaceae/anatomía & histología , Solanaceae/citología , Arabidopsis/anatomía & histología , Arabidopsis/citología , Celulosa/metabolismo , Endospermo/crecimiento & desarrollo , Germinación , Lepidium sativum/anatomía & histología , Lepidium sativum/citología , Mananos/metabolismo , Monosacáridos/química , Mutación/genética , Pectinas/metabolismo , Nicotiana/anatomía & histología , Nicotiana/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...