Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Lett ; 46(5): 937-940, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33649625

RESUMEN

Using ultra-high repetition rate lasers (≥100kHz) is one of the most promising strategies for the next generation of satellite laser ranging (SLR) systems. We present successful 1 MHz repetition rate SLR to targets up to inclined geosynchronous orbits at nighttime. Among those, a maximum return rate of up to 53% was achieved, equivalent to 265 k returns per second for the satellite Swarm-B. In addition, daytime megahertz (MHz) SLR was realized by utilizing a propagated MHz range gate to reduce the massive background noise. In the future, MHz SLR will greatly improve current technology with respect to data amount and data precision, shorter acquisition time, target signature detection, and attitude determination.

2.
Nat Commun ; 11(1): 3735, 2020 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-32753617

RESUMEN

Satellite laser ranging allows to measure distances to satellites equipped with retroreflectors in orbits up to 36000 km. Utilizing a higher powered laser, space debris laser ranging detects diffuse reflections from defunct satellites or rocket bodies up to a distance of 3000 km. So far space debris laser ranging was only possible within a few hours around twilight while it is dark at the satellite laser ranging station and space debris is illuminated by the sun. Here we present space debris laser ranging results during daylight. Space debris objects are visualized against the blue sky background and biases corrected in real-time. The results are a starting point for all space debris laser ranging stations to drastically increase their output in the near future. A network of a few stations worldwide will be able to improve orbital predictions significantly as necessary for removal missions, conjunction warnings, avoidance maneuvers or attitude determination.

3.
Phys Rev Lett ; 120(3): 030501, 2018 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-29400544

RESUMEN

We perform decoy-state quantum key distribution between a low-Earth-orbit satellite and multiple ground stations located in Xinglong, Nanshan, and Graz, which establish satellite-to-ground secure keys with ∼kHz rate per passage of the satellite Micius over a ground station. The satellite thus establishes a secure key between itself and, say, Xinglong, and another key between itself and, say, Graz. Then, upon request from the ground command, Micius acts as a trusted relay. It performs bitwise exclusive or operations between the two keys and relays the result to one of the ground stations. That way, a secret key is created between China and Europe at locations separated by 7600 km on Earth. These keys are then used for intercontinental quantum-secured communication. This was, on the one hand, the transmission of images in a one-time pad configuration from China to Austria as well as from Austria to China. Also, a video conference was performed between the Austrian Academy of Sciences and the Chinese Academy of Sciences, which also included a 280 km optical ground connection between Xinglong and Beijing. Our work clearly confirms the Micius satellite as a robust platform for quantum key distribution with different ground stations on Earth, and points towards an efficient solution for an ultralong-distance global quantum network.

4.
Opt Express ; 20(19): 21485-94, 2012 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-23037268

RESUMEN

The brilliancy and variety of structural colors found in nature has become a major scientific topic in recent years. Rapid-prototyping processes enable the fabrication of according structures, but the technical exploitation requires a profound understanding of structural features and material properties regarding the generation of reflected color. This paper presents an extensive simulation of the reflectance spectra of a simplified 2D Morpho butterfly wing model by utilizing the finite-difference time-domain method. The structural parameters are optimized for reflection in a given spectral range. A comparison to simpler models, such as a plane dielectric layer stack, provides an understanding of the origin of the reflection behavior. We find that the wavelength of the reflection maximum is mainly set by the lateral dimensions of the structures. Furthermore small variations of the vertical dimensions leave the spectral position of the reflectance wavelength unchanged, potentially reducing grating effects.


Asunto(s)
Mariposas Diurnas/anatomía & histología , Simulación por Computador , Pigmentación , Animales , Color , Factores de Tiempo , Alas de Animales/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...