Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Viruses ; 10(6)2018 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-29861435

RESUMEN

Sudan virus (SUDV) and Ebola viruses (EBOV) are both members of the Ebolavirus genus and have been sources of epidemics and outbreaks for several decades. We present here the generation and characterization of cross-reactive antibodies to both SUDV and EBOV, which were produced in a cell-free system and protective against SUDV in mice. A non-human primate, cynomolgus macaque, was immunized with viral-replicon particles expressing the glycoprotein of SUDV-Boniface (8A). Two separate antibody fragment phage display libraries were constructed after four immunogen injections. Both libraries were screened first against the SUDV and a second library was cross-selected against EBOV-Kikwit. Sequencing of 288 selected clones from the two distinct libraries identified 58 clones with distinct VH and VL sequences. Many of these clones were cross-reactive to EBOV and SUDV and able to neutralize SUDV. Three of these recombinant antibodies (X10B1, X10F3, and X10H2) were produced in the scFv-Fc format utilizing a cell-free production system. Mice that were challenged with SUDV-Boniface receiving 100µg of the X10B1/X10H2 scFv-Fc combination 6 and 48-h post-exposure demonstrated partial protection individually and complete protection as a combination. The data herein suggests these antibodies may be promising candidates for further therapeutic development.


Asunto(s)
Anticuerpos Antivirales/farmacología , Ebolavirus , Fiebre Hemorrágica Ebola/terapia , Glicoproteínas de Membrana/inmunología , Profilaxis Posexposición , Vacunas de Partículas Similares a Virus/inmunología , Proteínas de la Matriz Viral/inmunología , Animales , Anticuerpos Neutralizantes/farmacología , Técnicas de Visualización de Superficie Celular , Reacciones Cruzadas , Femenino , Macaca , Masculino , Ratones , Ratones Noqueados , Anticuerpos de Cadena Única/farmacología , Vacunación
2.
Biochemistry ; 57(5): 516-519, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29323879

RESUMEN

Malaria, one of the most common vector borne human diseases, is a major world health issue. In 2015 alone, more than 200 million people were infected with malaria, out of which, 429 000 died. Even though artemisinin-based combination therapies (ACT) are highly effective at treating malaria infections, novel efforts toward development of vaccines to prevent transmission are still needed. Pfs25, a postfertilization stage parasite surface antigen, is a leading transmission-blocking vaccine (TBV) candidate. It is postulated that Pfs25 anchors to the cell membrane using a glycosylphosphatidylinositol (GPI) linker, which itself possesses pro-inflammatory properties. In this study, Escherichia coli derived extract (XtractCF+TM) was used in cell free protein synthesis [CFPS] to successfully express >200 mg/L of recombinant Pfs25 with a C-terminal non-natural amino acid (nnAA), namely, p-azidomethyl phenylalanine (pAMF), which possesses a reactive azide group. Thereafter, a unique conjugate vaccine (CV), namely, Pfs25-GPI was generated with dibenzocyclooctyne (DBCO) derivatized glycan core of malaria GPI using a simple but highly efficient copper free click chemistry reaction. In mice immunized with Pfs25 or Pfs25-GPI, the Pfs25-GPI group showed significantly higher titers compared to the Pfs25 group. Moreover, only purified IgGs from Pfs25-GPI group were able to significantly block transmission of parasites to mosquitoes, as judged by a standard membrane feeding assay [SMFA]. To our knowledge, this is the first report of the generation of a CV using Pfs25 and malaria specific GPI where the GPI is shown to enhance the ability of Pfs25 to elicit transmission blocking antibodies.


Asunto(s)
Glicosilfosfatidilinositoles/uso terapéutico , Vacunas contra la Malaria/uso terapéutico , Malaria Falciparum/prevención & control , Plasmodium falciparum/inmunología , Proteínas Protozoarias/uso terapéutico , Animales , Formación de Anticuerpos , Glicosilfosfatidilinositoles/inmunología , Humanos , Inmunización , Malaria , Vacunas contra la Malaria/inmunología , Malaria Falciparum/inmunología , Malaria Falciparum/transmisión , Ratones , Proteínas Protozoarias/inmunología , Vacunas Conjugadas/inmunología , Vacunas Conjugadas/uso terapéutico , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/uso terapéutico
3.
Sci Rep ; 7(1): 3026, 2017 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-28596531

RESUMEN

Amber codon suppression for the insertion of non-natural amino acids (nnAAs) is limited by competition with release factor 1 (RF1). Here we describe the genome engineering of a RF1 mutant strain that enhances suppression efficiency during cell-free protein synthesis, without significantly impacting cell growth during biomass production. Specifically, an out membrane protease (OmpT) cleavage site was engineered into the switch loop of RF1, which enables its conditional inactivation during cell lysis. This facilitates extract production without additional processing steps, resulting in a scaleable extract production process. The RF1 mutant extract allows nnAA incorporation at previously intractable sites of an IgG1 and at multiple sites in the same polypeptide chain. Conjugation of cytotoxic agents to these nnAAs, yields homogeneous antibody drug conjugates (ADCs) that can be optimized for conjugation site, drug to antibody ratio (DAR) and linker-warheads designed for efficient tumor killing. This platform provides the means to generate therapeutic ADCs inaccessible by other methods that are efficient in their cytotoxin delivery to tumor with reduced dose-limiting toxicities and thus have the potential for better clinical impact.


Asunto(s)
Aminoácidos/química , Inmunoconjugados , Factores de Terminación de Péptidos/química , Factores de Terminación de Péptidos/genética , Ingeniería de Proteínas , Sitios de Unión , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cromatografía Liquida , Codón de Terminación , Estabilidad de Medicamentos , Humanos , Inmunoconjugados/química , Inmunoconjugados/aislamiento & purificación , Inmunoconjugados/metabolismo , Inmunoconjugados/farmacología , Inmunoglobulina G/química , Inmunoglobulina G/farmacología , Espectrometría de Masas , Modelos Moleculares , Mutación , Factores de Terminación de Péptidos/metabolismo , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad , Trastuzumab/química , Trastuzumab/farmacología
4.
J Biol Chem ; 291(27): 13974-13986, 2016 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-27129258

RESUMEN

The prominent role of voltage-gated sodium channel 1.7 (Nav1.7) in nociception was revealed by remarkable human clinical and genetic evidence. Development of potent and subtype-selective inhibitors of this ion channel is crucial for obtaining therapeutically useful analgesic compounds. Microproteins isolated from animal venoms have been identified as promising therapeutic leads for ion channels, because they naturally evolved to be potent ion channel blockers. Here, we report the engineering of highly potent and selective inhibitors of the Nav1.7 channel based on tarantula ceratotoxin-1 (CcoTx1). We utilized a combination of directed evolution, saturation mutagenesis, chemical modification, and rational drug design to obtain higher potency and selectivity to the Nav1.7 channel. The resulting microproteins are highly potent (IC50 to Nav1.7 of 2.5 nm) and selective. We achieved 80- and 20-fold selectivity over the closely related Nav1.2 and Nav1.6 channels, respectively, and the IC50 on skeletal (Nav1.4) and cardiac (Nav1.5) sodium channels is above 3000 nm The lead molecules have the potential for future clinical development as novel therapeutics in the treatment of pain.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.7/química , Manejo del Dolor/métodos , Ingeniería de Proteínas , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Células HEK293 , Humanos , Canal de Sodio Activado por Voltaje NAV1.7/efectos de los fármacos , Técnicas de Placa-Clamp , Filogenia , Venenos de Araña/química
5.
Biotechnol Prog ; 31(3): 823-31, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25826247

RESUMEN

Cell-free protein synthesis (CFPS) systems allow for robust protein expression with easy manipulation of conditions to improve protein yield and folding. Recent technological developments have significantly increased the productivity and reduced the operating costs of CFPS systems, such that they can compete with conventional in vivo protein production platforms, while also offering new routes for the discovery and production of biotherapeutics. As cell-free systems have evolved, productivity increases have commonly been obtained by addition of components to previously designed reaction mixtures without careful re-examination of the essentiality of reagents from previous generations. Here we present a systematic sensitivity analysis of the components in a conventional Escherichia coli CFPS reaction mixture to evaluate their optimal concentrations for production of the immunoglobulin G trastuzumab. We identify eight changes to the system, which result in optimal expression of trastuzumab. We find that doubling the potassium glutamate concentration, while entirely eliminating pyruvate, coenzyme A, NAD, total tRNA, folinic acid, putrescine and ammonium glutamate, results in a highly productive cell-free system with a 95% reduction in reagent costs (excluding cell-extract, plasmid, and T7 RNA polymerase made in-house). A larger panel of other proteins was also tested and all show equivalent or improved yields with our simplified system. Furthermore, we demonstrate that all of the reagents for CFPS can be combined in a single freeze-thaw stable master mix to improve reliability and ease of use. These improvements are important for the application of the CFPS system in fields such as protein engineering, high-throughput screening, and biotherapeutics.


Asunto(s)
Escherichia coli/metabolismo , Inmunoglobulina G/biosíntesis , Biosíntesis de Proteínas , Ingeniería de Proteínas/métodos , Trastuzumab/biosíntesis , Coenzima A/química , ARN Polimerasas Dirigidas por ADN/química , Escherichia coli/genética , Expresión Génica , Ácido Glutámico/química , Inmunoglobulina G/genética , Leucovorina/química , NAD/química , Poliaminas/química , Pliegue de Proteína , Putrescina/química , Ácido Pirúvico/química , ARN de Transferencia/química , Reproducibilidad de los Resultados , Trastuzumab/genética , Proteínas Virales/química
6.
MAbs ; 7(1): 231-42, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25427258

RESUMEN

Bispecific antibodies have emerged in recent years as a promising field of research for therapies in oncology, inflammable diseases, and infectious diseases. Their capability of dual target recognition allows for novel therapeutic hypothesis to be tested, where traditional mono-specific antibodies would lack the needed mode of target engagement. Among extremely diverse architectures of bispecific antibodies, knobs-into-holes (KIHs) technology, which involves engineering CH3 domains to create either a "knob" or a "hole" in each heavy chain to promote heterodimerization, has been widely applied. Here, we describe the use of a cell-free expression system (Xpress CF) to produce KIH bispecific antibodies in multiple scaffolds, including 2-armed heterodimeric scFv-KIH and one-armed asymmetric BiTE-KIH with tandem scFv. Efficient KIH production can be achieved by manipulating the plasmid ratio between knob and hole, and further improved by addition of prefabricated knob or hole. These studies demonstrate the versatility of Xpress CF in KIH production and provide valuable insights into KIH construct design for better assembly and expression titer.


Asunto(s)
Anticuerpos Biespecíficos/biosíntesis , Expresión Génica , Anticuerpos de Cadena Única/biosíntesis , Animales , Anticuerpos Biespecíficos/genética , Células CHO , Sistema Libre de Células/metabolismo , Cricetinae , Cricetulus , Humanos , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Anticuerpos de Cadena Única/genética
7.
Pharm Res ; 32(11): 3480-93, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25511917

RESUMEN

Antibody drug conjugates (ADCs) have progressed from hypothesis to approved therapeutics in less than 30 years, and the technologies available to modify both the antibodies and the cytotoxic drugs are expanding rapidly. For reasons well reviewed previously, the field is trending strongly toward homogeneous, defined antibody conjugation. In this review we present the antibody and small molecule chemistries that are currently used and being explored to develop specific, homogenous ADCs.


Asunto(s)
Anticuerpos Monoclonales/química , Inmunoconjugados/química , Ingeniería de Proteínas , Bibliotecas de Moléculas Pequeñas/química , Tecnología Farmacéutica/métodos , Animales , Diseño de Fármacos , Humanos
8.
MAbs ; 6(3): 671-8, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24517929

RESUMEN

Antibodies are well-established as therapeutics, and the preclinical and clinical pipeline of these important biologics is growing rapidly. Consequently, there is considerable interest in technologies to engineer and manufacture them. Mammalian cell culture is commonly used for production because eukaryotic expression systems have evolved complex and efficient chaperone systems for the folding of antibodies. However, given the ease and manipulability of bacteria, antibody discovery efforts often employ bacterial expression systems despite their limitations in generating high titers of functional antibody. Open-Cell Free Synthesis (OCFS) is a coupled transcription-translation system that has the advantages of prokaryotic systems while achieving high titers of antibody expression. Due to the open nature of OCFS, it is easily modified by chemical or protein additives to improve the folding of select proteins. As such, we undertook a protein additive screen to identify chaperone proteins that improve the folding and assembly of trastuzumab in OCFS. From the screen, we identified the disulfide isomerase DsbC and the prolyl isomerase FkpA as important positive effectors of IgG folding. These periplasmic chaperones function synergistically for the folding and assembly of IgG, and, when present in sufficient quantities, gram per liter IgG titers can be produced. This technological advancement allows the rapid development and manufacturing of immunoglobulin proteins and pushes OCFS to the forefront of production technologies for biologics.


Asunto(s)
Bacterias/genética , Bacterias/metabolismo , Inmunoglobulinas/biosíntesis , Inmunoglobulinas/genética , Chaperonas Moleculares/metabolismo , Anticuerpos Monoclonales Humanizados/biosíntesis , Anticuerpos Monoclonales Humanizados/química , Anticuerpos Monoclonales Humanizados/genética , Biotecnología , Sistema Libre de Células , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Inmunoglobulina G/biosíntesis , Inmunoglobulina G/química , Inmunoglobulina G/genética , Inmunoglobulinas/química , Chaperonas Moleculares/genética , Proteína Disulfuro Isomerasas/genética , Proteína Disulfuro Isomerasas/metabolismo , Ingeniería de Proteínas , Pliegue de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Trastuzumab
9.
Bioconjug Chem ; 25(2): 351-61, 2014 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-24437342

RESUMEN

Antibody-drug conjugates (ADCs) are a targeted chemotherapeutic currently at the cutting edge of oncology medicine. These hybrid molecules consist of a tumor antigen-specific antibody coupled to a chemotherapeutic small molecule. Through targeted delivery of potent cytotoxins, ADCs exhibit improved therapeutic index and enhanced efficacy relative to traditional chemotherapies and monoclonal antibody therapies. The currently FDA-approved ADCs, Kadcyla (Immunogen/Roche) and Adcetris (Seattle Genetics), are produced by conjugation to surface-exposed lysines, or partial disulfide reduction and conjugation to free cysteines, respectively. These stochastic modes of conjugation lead to heterogeneous drug products with varied numbers of drugs conjugated across several possible sites. As a consequence, the field has limited understanding of the relationships between the site and extent of drug loading and ADC attributes such as efficacy, safety, pharmacokinetics, and immunogenicity. A robust platform for rapid production of ADCs with defined and uniform sites of drug conjugation would enable such studies. We have established a cell-free protein expression system for production of antibody drug conjugates through site-specific incorporation of the optimized non-natural amino acid, para-azidomethyl-l-phenylalanine (pAMF). By using our cell-free protein synthesis platform to directly screen a library of aaRS variants, we have discovered a novel variant of the Methanococcus jannaschii tyrosyl tRNA synthetase (TyrRS), with a high activity and specificity toward pAMF. We demonstrate that site-specific incorporation of pAMF facilitates near complete conjugation of a DBCO-PEG-monomethyl auristatin (DBCO-PEG-MMAF) drug to the tumor-specific, Her2-binding IgG Trastuzumab using strain-promoted azide-alkyne cycloaddition (SPAAC) copper-free click chemistry. The resultant ADCs proved highly potent in in vitro cell cytotoxicity assays.


Asunto(s)
Aminoácidos/química , Inmunoconjugados/química , Línea Celular , Sistema Libre de Células , Cromatografía Liquida , Ensayos Analíticos de Alto Rendimiento , Humanos , Inmunoconjugados/farmacología , Espectrometría de Masas en Tándem
10.
MAbs ; 4(2): 217-25, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22377750

RESUMEN

We describe protein synthesis, folding and assembly of antibody fragments and full-length aglycosylated antibodies using an Escherichia coli-based open cell-free synthesis (OCFS) system. We use DNA template design and high throughput screening at microliter scale to rapidly optimize production of single-chain Fv (scFv) and Fab antibody fragments that bind to human IL-23 and IL-13α1R, respectively. In addition we demonstrate production of aglycosylated immunoglobulin G (IgG 1) trastuzumab. These antibodies are produced rapidly over several hours in batch mode in standard bioreactors with linear scalable yields of hundreds of milligrams/L over a 1 million-fold change in scales up to pilot scale production. We demonstrate protein expression optimization of translation initiation region (TIR) libraries from gene synthesized linear DNA templates, optimization of the temporal assembly of a Fab from independent heavy chain and light chain plasmids and optimized expression of fully assembled trastuzumab that is equivalent to mammalian expressed material in biophysical and affinity based assays. These results illustrate how the open nature of the cell-free system can be used as a seamless antibody engineering platform from discovery to preclinical development of aglycosylated monoclonal antibodies and antibody fragments as potential therapeutics.


Asunto(s)
Biosíntesis de Proteínas , Anticuerpos de Cadena Única/biosíntesis , Transcripción Genética , Sistema Libre de Células/química , Glicosilación , Humanos , Subunidad alfa1 del Receptor de Interleucina-13/antagonistas & inhibidores , Subunidad alfa1 del Receptor de Interleucina-13/genética , Subunidad alfa1 del Receptor de Interleucina-13/inmunología , Interleucina-23/antagonistas & inhibidores , Interleucina-23/genética , Interleucina-23/inmunología , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Anticuerpos de Cadena Única/genética , Anticuerpos de Cadena Única/inmunología
11.
Biotechnol Bioeng ; 108(7): 1570-8, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21337337

RESUMEN

Engineering robust protein production and purification of correctly folded biotherapeutic proteins in cell-based systems is often challenging due to the requirements for maintaining complex cellular networks for cell viability and the need to develop associated downstream processes that reproducibly yield biopharmaceutical products with high product quality. Here, we present an alternative Escherichia coli-based open cell-free synthesis (OCFS) system that is optimized for predictable high-yield protein synthesis and folding at any scale with straightforward downstream purification processes. We describe how the linear scalability of OCFS allows rapid process optimization of parameters affecting extract activation, gene sequence optimization, and redox folding conditions for disulfide bond formation at microliter scales. Efficient and predictable high-level protein production can then be achieved using batch processes in standard bioreactors. We show how a fully bioactive protein produced by OCFS from optimized frozen extract can be purified directly using a streamlined purification process that yields a biologically active cytokine, human granulocyte-macrophage colony-stimulating factor, produced at titers of 700 mg/L in 10 h. These results represent a milestone for in vitro protein synthesis, with potential for the cGMP production of disulfide-bonded biotherapeutic proteins.


Asunto(s)
Biotecnología/métodos , Escherichia coli/enzimología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/biosíntesis , Tecnología Farmacéutica/métodos , Reactores Biológicos , Sistema Libre de Células , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Humanos , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...