Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
mBio ; 13(1): e0351721, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35012353

RESUMEN

Acinetobacter baumannii causes high mortality in ventilator-associated pneumonia patients, and antibiotic treatment is compromised by multidrug-resistant strains resistant to ß-lactams, carbapenems, cephalosporins, polymyxins, and tetracyclines. Among COVID-19 patients receiving ventilator support, a multidrug-resistant A. baumannii secondary infection is associated with a 2-fold increase in mortality. Here, we investigated the use of the 8-hydroxyquinoline ionophore PBT2 to break the resistance of A. baumannii to tetracycline class antibiotics. In vitro, the combination of PBT2 and zinc with either tetracycline, doxycycline, or tigecycline was shown to be bactericidal against multidrug-resistant A. baumannii, and any resistance that did arise imposed a fitness cost. PBT2 and zinc disrupted metal ion homeostasis in A. baumannii, increasing cellular zinc and copper while decreasing magnesium accumulation. Using a murine model of pulmonary infection, treatment with PBT2 in combination with tetracycline or tigecycline proved efficacious against multidrug-resistant A. baumannii. These findings suggest that PBT2 may find utility as a resistance breaker to rescue the efficacy of tetracycline-class antibiotics commonly employed to treat multidrug-resistant A. baumannii infections. IMPORTANCE Within intensive care unit settings, multidrug-resistant (MDR) Acinetobacter baumannii is a major cause of ventilator-associated pneumonia, and hospital-associated outbreaks are becoming increasingly widespread. Antibiotic treatment of A. baumannii infection is often compromised by MDR strains resistant to last-resort ß-lactam (e.g., carbapenems), polymyxin, and tetracycline class antibiotics. During the on-going COVID-19 pandemic, secondary bacterial infection by A. baumannii has been associated with a 2-fold increase in COVID-19-related mortality. With a rise in antibiotic resistance and a reduction in new antibiotic discovery, it is imperative to investigate alternative therapeutic regimens that complement the use of current antibiotic treatment strategies. Rescuing the efficacy of existing therapies for the treatment of MDR A. baumannii infection represents a financially viable pathway, reducing time, cost, and risk associated with drug innovation.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , COVID-19 , Neumonía Asociada al Ventilador , Humanos , Animales , Ratones , Tigeciclina/farmacología , Neumonía Asociada al Ventilador/tratamiento farmacológico , Neumonía Asociada al Ventilador/microbiología , Tetraciclina/farmacología , Pandemias , Infecciones por Acinetobacter/microbiología , Farmacorresistencia Bacteriana Múltiple , Antibacterianos/farmacología , Carbapenémicos/farmacología , beta-Lactamas/farmacología , Pruebas de Sensibilidad Microbiana , Zinc/farmacología
2.
mBio ; 12(5): e0218021, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34634944

RESUMEN

Legionella pneumophila, the causative agent of Legionnaires' disease, is a facultative intracellular pathogen that survives inside phagocytic host cells by establishing a protected replication niche, termed the "Legionella-containing vacuole" (LCV). To form an LCV and subvert pivotal host pathways, L. pneumophila employs a type IV secretion system (T4SS), which translocates more than 300 different effector proteins into the host cell. The L. pneumophila T4SS complex has been shown to span the bacterial cell envelope at the bacterial poles. However, the interactions between the T4SS and the LCV membrane are not understood. Using cryo-focused ion beam milling, cryo-electron tomography, and confocal laser scanning fluorescence microscopy, we show that up to half of the intravacuolar L. pneumophila bacteria tether their cell pole to the LCV membrane. Tethering coincides with the presence and function of T4SSs and likely promotes the establishment of distinct contact sites between T4SSs and the LCV membrane. Contact sites are characterized by indentations in the limiting LCV membrane and localize juxtaposed to T4SS machineries. The data are in agreement with the notion that effector translocation occurs by close membrane contact rather than by an extended pilus. Our findings provide novel insights into the interactions of the L. pneumophila T4SS with the LCV membrane in situ. IMPORTANCE Legionnaires' disease is a life-threatening pneumonia, which is characterized by high fever, coughing, shortness of breath, muscle pain, and headache. The disease is caused by the amoeba-resistant bacterium L. pneumophila found in various soil and aquatic environments and is transmitted to humans via the inhalation of small bacteria-containing droplets. An essential virulence factor of L. pneumophila is a so-called "type IV secretion system" (T4SS), which, by injecting a plethora of "effector proteins" into the host cell, determines pathogen-host interactions and the formation of a distinct intracellular compartment, the "Legionella-containing vacuole" (LCV). It is unknown how the T4SS makes contact to the LCV membrane to deliver the effectors. In this study, we identify indentations in the host cell membrane in close proximity to functional T4SSs localizing at the bacterial poles. Our work reveals first insights into the architecture of Legionella-LCV contact sites.


Asunto(s)
Proteínas Bacterianas/metabolismo , Legionella pneumophila/metabolismo , Enfermedad de los Legionarios/microbiología , Sistemas de Secreción Tipo IV/metabolismo , Vacuolas/microbiología , Proteínas Bacterianas/genética , Polaridad Celular , Humanos , Legionella pneumophila/citología , Legionella pneumophila/genética , Transporte de Proteínas , Sistemas de Secreción Tipo IV/genética
3.
Cell Microbiol ; 23(5): e13318, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33583106

RESUMEN

Dictyostelium discoideum Sey1 is the single ortholog of mammalian atlastin 1-3 (ATL1-3), which are large homodimeric GTPases mediating homotypic fusion of endoplasmic reticulum (ER) tubules. In this study, we generated a D. discoideum mutant strain lacking the sey1 gene and found that amoebae deleted for sey1 are enlarged, but grow and develop similarly to the parental strain. The ∆sey1 mutant amoebae showed an altered ER architecture, and the tubular ER network was partially disrupted without any major consequences for other organelles or the architecture of the secretory and endocytic pathways. Macropinocytic and phagocytic functions were preserved; however, the mutant amoebae exhibited cumulative defects in lysosomal enzymes exocytosis, intracellular proteolysis, and cell motility, resulting in impaired growth on bacterial lawns. Moreover, ∆sey1 mutant cells showed a constitutive activation of the unfolded protein response pathway (UPR), but they still readily adapted to moderate levels of ER stress, while unable to cope with prolonged stress. In D. discoideum ∆sey1 the formation of the ER-associated compartment harbouring the bacterial pathogen Legionella pneumophila was also impaired. In the mutant amoebae, the ER was less efficiently recruited to the "Legionella-containing vacuole" (LCV), the expansion of the pathogen vacuole was inhibited at early stages of infection and intracellular bacterial growth was reduced. In summary, our study establishes a role of D. discoideum Sey1 in ER architecture, proteolysis, cell motility and intracellular replication of L. pneumophila.


Asunto(s)
Dictyostelium/fisiología , Retículo Endoplásmico/ultraestructura , GTP Fosfohidrolasas/metabolismo , Legionella pneumophila/fisiología , Proteínas Protozoarias/metabolismo , Vacuolas/microbiología , Dictyostelium/crecimiento & desarrollo , Dictyostelium/microbiología , Dictyostelium/ultraestructura , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Retículo Endoplásmico Rugoso/microbiología , Retículo Endoplásmico Rugoso/fisiología , GTP Fosfohidrolasas/genética , Homeostasis , Interacciones Huésped-Patógeno , Legionella pneumophila/crecimiento & desarrollo , Movimiento , Muramidasa/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Protozoarias/genética , Vacuolas/fisiología
4.
Science ; 370(6514)2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-33060333

RESUMEN

Lipid droplets (LDs) are the major lipid storage organelles of eukaryotic cells and a source of nutrients for intracellular pathogens. We demonstrate that mammalian LDs are endowed with a protein-mediated antimicrobial capacity, which is up-regulated by danger signals. In response to lipopolysaccharide (LPS), multiple host defense proteins, including interferon-inducible guanosine triphosphatases and the antimicrobial cathelicidin, assemble into complex clusters on LDs. LPS additionally promotes the physical and functional uncoupling of LDs from mitochondria, reducing fatty acid metabolism while increasing LD-bacterial contacts. Thus, LDs actively participate in mammalian innate immunity at two levels: They are both cell-autonomous organelles that organize and use immune proteins to kill intracellular pathogens as well as central players in the local and systemic metabolic adaptation to infection.


Asunto(s)
Bacterias/inmunología , Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata , Gotas Lipídicas/inmunología , Animales , Péptidos Catiónicos Antimicrobianos/metabolismo , Ácidos Grasos/metabolismo , GTP Fosfohidrolasas/metabolismo , Células HEK293 , Humanos , Lipopolisacáridos/inmunología , Macrófagos/inmunología , Macrófagos/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/inmunología , Catelicidinas
5.
Pediatr Dermatol ; 37(4): 732-733, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32706465
7.
mBio ; 11(2)2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32209684

RESUMEN

Legionella pneumophila governs its interactions with host cells by secreting >300 different "effector" proteins. Some of these effectors contain eukaryotic domains such as the RCC1 (regulator of chromosome condensation 1) repeats promoting the activation of the small GTPase Ran. In this report, we reveal a conserved pattern of L. pneumophila RCC1 repeat genes, which are distributed in two main clusters of strains. Accordingly, strain Philadelphia-1 contains two RCC1 genes implicated in bacterial virulence, legG1 (Legionella eukaryotic gene 1), and ppgA, while strain Paris contains only one, pieG The RCC1 repeat effectors localize to different cellular compartments and bind distinct components of the Ran GTPase cycle, including Ran modulators and the small GTPase itself, and yet they all promote the activation of Ran. The pieG gene spans the corresponding open reading frames of legG1 and a separate adjacent upstream gene, lpg1975legG1 and lpg1975 are fused upon addition of a single nucleotide to encode a protein that adopts the binding specificity of PieG. Thus, a point mutation in pieG splits the gene, altering the effector target. These results indicate that divergent evolution of RCC1 repeat effectors defines the Ran GTPase cycle targets and that modulation of different components of the cycle might fine-tune Ran activation during Legionella infection.IMPORTANCELegionella pneumophila is a ubiquitous environmental bacterium which, upon inhalation, causes a life-threatening pneumonia termed Legionnaires' disease. The opportunistic pathogen grows in amoebae and macrophages by employing a "type IV" secretion system, which secretes more than 300 different "effector" proteins into the host cell, where they subvert pivotal processes. The function of many of these effector proteins is unknown, and their evolution has not been studied. L. pneumophila RCC1 repeat effectors target the small GTPase Ran, a molecular switch implicated in different cellular processes such as nucleocytoplasmic transport and microtubule cytoskeleton dynamics. We provide evidence that one or more RCC1 repeat genes are distributed in two main clusters of L. pneumophila strains and have divergently evolved to target different components of the Ran GTPase activation cycle at different subcellular sites. Thus, L. pneumophila employs a sophisticated strategy to subvert host cell Ran GTPase during infection.


Asunto(s)
Proteínas Bacterianas/genética , Evolución Molecular , Interacciones Huésped-Patógeno , Legionella pneumophila/genética , Proteína de Unión al GTP ran/genética , Células A549 , Animales , Dictyostelium/microbiología , Células HEK293 , Humanos , Legionella pneumophila/patogenicidad , Macrófagos/microbiología , Ratones , Células RAW 264.7 , Proteína de Unión al GTP ran/metabolismo
8.
Methods Mol Biol ; 1921: 221-238, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30694495

RESUMEN

Legionella pneumophila is a facultative intracellular bacterium, which grows in amoebae as well as in macrophages and epithelial cells. Depletion of genes of interest by RNA interference (RNAi) has proven to be a robust and economic technique to study L. pneumophila-host cell interactions. Predesigned and often validated double-stranded (ds) RNA oligonucleotides that silence specific genes are commercially available. RNAi results in a reduced level of distinct proteins, which allows studying the specific role of host cell components involved in L. pneumophila infection. Here, we describe how to assess RNAi-mediated protein depletion efficiency and cytotoxic effects in human A549 lung epithelial cells and murine RAW 264.7 macrophages. Moreover, we demonstrate how RNAi can be used to screen for novel host cell proteins involved in the formation of the Legionella-containing vacuole and intracellular replication of the pathogen.


Asunto(s)
Interacciones Huésped-Patógeno/genética , Legionella/fisiología , Legionelosis/genética , Legionelosis/microbiología , Interferencia de ARN , Animales , Línea Celular , Supervivencia Celular , Citometría de Flujo , Expresión Génica , Genes Reporteros , Humanos , Legionella pneumophila/fisiología , Macrófagos/metabolismo , Macrófagos/microbiología , Ratones , Sistemas de Secreción Tipo IV , Vacuolas/metabolismo , Vacuolas/microbiología
9.
J Ultrasound Med ; 38(6): 1553-1559, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30341956

RESUMEN

OBJECTIVES: Calcaneal quantitative ultrasound (QUS) is a readily accessible and radiation-free alternative to dual-energy x-ray absorptiometry (DXA) for assessing bone mineral density (BMD). Results obtained from QUS measurement cannot directly be compared to DXA, since these techniques capture different bone-specific parameters. To identify individuals who are likely to have osteoporosis by DXA, device-specific thresholds have to be defined for QUS. This cross-sectional study evaluated the accuracy of QUS to identify postmenopausal women with osteoporosis, defined as a T score of -2.5 SDs or lower by DXA, and to calculate device-specific cutoff values for the QUS device investigated. METHODS: We assessed BMD at the lumbar spine, bilateral femoral neck, and total hip sites with DXA and QUS parameters of the right and left calcanei in a cohort of 245 postmenopausal treatment-naïve women between 40 and 82 years. Correlation coefficients for BMD and QUS parameters were calculated. Receiver operating characteristic curves were generated, and areas under the curves (AUCs) were evaluated. Cutoff values for QUS were defined. RESULTS: Calcaneal QUS had the ability to identify postmenopausal women with a T score of -2.5 or lower at the right hip (AUC, 0.887) and left femoral neck (AUC, 0.824). Cutoff values for the QUS T scores at the right (-1.455) and left (-1.480) calcanei were defined for screening purposes. CONCLUSIONS: This study provides insights into the comparative performance of QUS with DXA. Considering the diagnostic accuracy of this modality in comparison to DXA, it can be recommended as a prescreening tool to reduce the number of DXA screenings.


Asunto(s)
Densidad Ósea/fisiología , Osteoporosis/diagnóstico por imagen , Osteoporosis/fisiopatología , Ultrasonografía/métodos , Población Blanca/estadística & datos numéricos , Adulto , Anciano , Anciano de 80 o más Años , Estudios Transversales , Estudios de Evaluación como Asunto , Femenino , Humanos , Persona de Mediana Edad , Posmenopausia , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
10.
mBio ; 9(6)2018 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-30538188

RESUMEN

Legionella pneumophila is the causative agent of a pneumonia termed Legionnaires' disease. The facultative intracellular bacterium employs the Icm/Dot type IV secretion system (T4SS) and a plethora of translocated "effector" proteins to interfere with host vesicle trafficking pathways and establish a replicative niche, the Legionella-containing vacuole (LCV). Internalization of the pathogen and the events immediately ensuing are accompanied by host cell-mediated phosphoinositide (PI) lipid changes and the Icm/Dot-controlled conversion of the LCV from a PtdIns(3)P-positive vacuole into a PtdIns(4)P-positive replication-permissive compartment, which tightly associates with the endoplasmic reticulum. The source and formation of PtdIns(4)P are ill-defined. Using dually labeled Dictyostelium discoideum amoebae and real-time high-resolution confocal laser scanning microscopy (CLSM), we show here that nascent LCVs continuously capture and accumulate PtdIns(4)P-positive vesicles from the host cell. Trafficking of these PtdIns(4)P-positive vesicles to LCVs occurs independently of the Icm/Dot system, but their sustained association requires a functional T4SS. During the infection, PtdIns(3)P-positive membranes become compacted and segregated from the LCV, and PtdIns(3)P-positive vesicles traffic to the LCV but do not fuse. Moreover, using eukaryotic and prokaryotic PtdIns(4)P probes (2×PHFAPP-green fluorescent protein [2×PHFAPP-GFP] and P4CSidC-GFP, respectively) along with Arf1-GFP, we show that PtdIns(4)P-rich membranes of the trans-Golgi network associate with the LCV. Intriguingly, the interaction dynamics of 2×PHFAPP-GFP and P4CSidC-GFP are spatially separable and reveal the specific PtdIns(4)P pool from which the LCV PI originates. These findings provide high-resolution real-time insights into how L. pneumophila exploits the cellular dynamics of membrane-bound PtdIns(4)P for LCV formation.IMPORTANCE The environmental bacterium Legionella pneumophila causes a life-threatening pneumonia termed Legionnaires' disease. The bacteria grow intracellularly in free-living amoebae as well as in respiratory tract macrophages. To this end, L. pneumophila forms a distinct membrane-bound compartment called the Legionella-containing vacuole (LCV). Phosphoinositide (PI) lipids are crucial regulators of the identity and dynamics of host cell organelles. The PI lipid PtdIns(4)P is a hallmark of the host cell secretory pathway, and decoration of LCVs with this PI is required for pathogen vacuole maturation. The source, dynamics, and mode of accumulation of PtdIns(4)P on LCVs are largely unknown. Using Dictyostelium amoebae producing different fluorescent probes as host cells, we show here that LCVs rapidly acquire PtdIns(4)P through the continuous interaction with PtdIns(4)P-positive host vesicles derived from the Golgi apparatus. Thus, the PI lipid pattern of the secretory pathway contributes to the formation of the replication-permissive pathogen compartment.


Asunto(s)
Vesículas Citoplasmáticas/metabolismo , Dictyostelium/microbiología , Aparato de Golgi/metabolismo , Legionella pneumophila/crecimiento & desarrollo , Fosfatos de Fosfatidilinositol/análisis , Vacuolas/metabolismo , Vesículas Citoplasmáticas/química , Microscopía Confocal , Sistemas de Secreción Tipo IV/metabolismo , Vacuolas/microbiología
11.
Commun Integr Biol ; 11(2): 1-5, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30083282

RESUMEN

The ubiquitous environmental bacterium Legionella pneumophila is the causative agent of Legionnaires' pneumonia and replicates in free-living protozoa and mammalian macrophages in a specific compartment, the Legionella-containing vacuole (LCV). LCVs communicate with the endosomal, retrograde and secretory vesicle trafficking pathway, and eventually tightly interact with the endoplasmic reticulum (ER). In Dictyostelium discoideum amoebae and macrophages, the ER tubule-resident large GTPase Sey1/atlastin3 (Atl3) accumulates on LCVs and promotes LCV expansion and intracellular replication of L. pneumophila. Fluorescence microscopy of D. discoideum infected with L. pneumophila indicated that Sey1 is involved in extensive ER remodeling around LCVs. An ultrastructural analysis confirmed these findings. Moreover, dominant negative Sey1_K154A compromises ER accumulation on LCVs and causes an aberrant ER morphology in uninfected D. discoideum as well as in amoebae infected with avirulent L. pneumophila that lack a functional type IV secretion system. Thus, the large, dynamin-like GTPase Sey1/Atl3 controls circumferential ER remodeling during LCV maturation.

12.
Int J Med Microbiol ; 308(1): 49-57, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28865995

RESUMEN

The environmental bacterium Legionella pneumophila replicates in free-living amoeba as well as in alveolar macrophages upon inhalation of bacteria-laden aerosols. Resistance of the opportunistic pathogen to macrophages is a prerequisite to cause a severe pneumonia called Legionnaires' disease. L. pneumophila grows intracellularly in a unique, ER-associated compartment, the Legionella-containing vacuole (LCV). The bacterial Icm/Dot type IV secretion system represents an essential virulence factor, which translocates approximately 300 "effector proteins" into protozoan or mammalian host cells. Some of these effectors contribute to the formation of the LCV by targeting conserved host factors implicated in membrane dynamics, such as phosphoinositide lipids and small GTPases. Here we review recent findings on the role of phosphoinositides, small and large GTPases as well as ER dynamics for pathogen vacuole formation and intracellular replication of L. pneumophila.


Asunto(s)
Retículo Endoplásmico/metabolismo , GTP Fosfohidrolasas/metabolismo , Legionella/fisiología , Fosfatidilinositoles/metabolismo , Vacuolas/microbiología , Amoeba/microbiología , Animales , Proteínas Bacterianas/metabolismo , Interacciones Huésped-Patógeno , Humanos , Legionella/metabolismo , Macrófagos/microbiología , Sistemas de Secreción Tipo IV/metabolismo , Vacuolas/metabolismo
13.
Nat Commun ; 8(1): 1543, 2017 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-29146912

RESUMEN

Legionella pneumophila can cause Legionnaires' disease and replicates intracellularly in a distinct Legionella-containing vacuole (LCV). LCV formation is a complex process that involves a plethora of type IV-secreted effector proteins. The effector RidL binds the Vps29 retromer subunit, blocks retrograde vesicle trafficking, and promotes intracellular bacterial replication. Here, we reveal that the 29-kDa N-terminal domain of RidL (RidL2-281) adopts a "foot-like" fold comprising a protruding ß-hairpin at its "heel". The deletion of the ß-hairpin, the exchange to Glu of Ile170 in the ß-hairpin, or Leu152 in Vps29 abolishes the interaction in eukaryotic cells and in vitro. RidL2-281 or RidL displace the Rab7 GTPase-activating protein (GAP) TBC1D5 from the retromer and LCVs, respectively, and TBC1D5 promotes the intracellular growth of L. pneumophila. Thus, the hydrophobic ß-hairpin of RidL is critical for binding of the L. pneumophila effector to the Vps29 retromer subunit and displacement of the regulator TBC1D5.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Legionella pneumophila/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Proteínas Bacterianas/química , Dictyostelium , Proteínas Activadoras de GTPasa/química , Células HeLa , Humanos , Legionella pneumophila/fisiología , Ratones , Microscopía Confocal , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Transporte de Proteínas , Células RAW 264.7 , Vacuolas/metabolismo , Vacuolas/microbiología , Proteínas de Transporte Vesicular/química
14.
Cell Host Microbe ; 22(3): 302-316.e7, 2017 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-28867389

RESUMEN

The intracellular bacteria Legionella pneumophila encodes a type IV secretion system (T4SS) that injects effector proteins into macrophages in order to establish and replicate within the Legionella-containing vacuole (LCV). Once generated, the LCV interacts with mitochondria through unclear mechanisms. We show that Legionella uses both T4SS-independent and T4SS-dependent mechanisms to respectively interact with mitochondria and induce mitochondrial fragmentation that ultimately alters mitochondrial metabolism. The T4SS effector MitF, a Ran GTPase activator, is required for fission of the mitochondrial network. These effects of MitF occur through accumulation of mitochondrial DNM1L, a GTPase critical for fission. Furthermore mitochondrial respiration is abruptly halted in a T4SS-dependent manner, while T4SS-independent upregulation of cellular glycolysis remains elevated. Collectively, these alterations in mitochondrial dynamics promote a Warburg-like phenotype in macrophages that favors bacterial replication. Hence the rewiring of cellular bioenergetics to create a replication permissive niche in host cells is a virulence strategy of L. pneumophila.


Asunto(s)
Legionella pneumophila/metabolismo , Enfermedad de los Legionarios/metabolismo , Macrófagos/metabolismo , Dinámicas Mitocondriales , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Células Cultivadas , Dinaminas , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Interacciones Huésped-Patógeno , Humanos , Legionella pneumophila/genética , Enfermedad de los Legionarios/microbiología , Enfermedad de los Legionarios/fisiopatología , Macrófagos/microbiología , Ratones , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Células RAW 264.7 , Sistemas de Secreción Tipo IV/genética , Sistemas de Secreción Tipo IV/metabolismo
15.
EMBO Rep ; 18(10): 1817-1836, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28835546

RESUMEN

The pathogenic bacterium Legionella pneumophila replicates in host cells within a distinct ER-associated compartment termed the Legionella-containing vacuole (LCV). How the dynamic ER network contributes to pathogen proliferation within the nascent LCV remains elusive. A proteomic analysis of purified LCVs identified the ER tubule-resident large GTPase atlastin3 (Atl3, yeast Sey1p) and the reticulon protein Rtn4 as conserved LCV host components. Here, we report that Sey1/Atl3 and Rtn4 localize to early LCVs and are critical for pathogen vacuole formation. Sey1 overproduction promotes intracellular growth of L. pneumophila, whereas a catalytically inactive, dominant-negative GTPase mutant protein, or Atl3 depletion, restricts pathogen replication and impairs LCV maturation. Sey1 is not required for initial recruitment of ER to PtdIns(4)P-positive LCVs but for subsequent pathogen vacuole expansion. GTP (but not GDP) catalyzes the Sey1-dependent aggregation of purified, ER-positive LCVs in vitro Thus, Sey1/Atl3-dependent ER remodeling contributes to LCV maturation and intracellular replication of L. pneumophila.


Asunto(s)
Retículo Endoplásmico/fisiología , Proteínas de Unión al GTP/metabolismo , Legionella pneumophila/crecimiento & desarrollo , Proteínas de la Membrana/metabolismo , Vacuolas/metabolismo , Vacuolas/microbiología , Células A549 , Dictyostelium/microbiología , Retículo Endoplásmico/microbiología , Proteínas de Unión al GTP/genética , Humanos , Legionella pneumophila/patogenicidad , Macrófagos/microbiología , Proteínas de la Membrana/genética , Proteínas Nogo/genética , Proteínas Nogo/metabolismo , Proteómica , Sistemas de Secreción Tipo IV
16.
Mol Cell Proteomics ; 16(4): 622-641, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28183814

RESUMEN

Legionella pneumophila is an opportunistic bacterial pathogen that causes a severe lung infection termed "Legionnaires' disease." The pathogen replicates in environmental protozoa as well as in macrophages within a unique membrane-bound compartment, the Legionella-containing-vacuole (LCV). LCV formation requires the bacterial Icm/Dot type IV secretion system, which translocates ca. 300 "effector proteins" into host cells, where they target distinct host factors. The L. pneumophila "pentuple" mutant (Δpentuple) lacks 5 gene clusters (31% of the effector proteins) and replicates in macrophages but not in Dictyostelium discoideum amoeba. To elucidate the host factors defining a replication-permissive compartment, we compare here the proteomes of intact LCVs isolated from D. discoideum or macrophages infected with Δpentuple or the parental strain Lp02. This analysis revealed that the majority of host proteins are shared in D. discoideum or macrophage LCVs containing the mutant or the parental strain, respectively, whereas some proteins preferentially localize to distinct LCVs. The small GTPase Rap1 was identified on D. discoideum LCVs containing strain Lp02 but not the Δpentuple mutant and on macrophage LCVs containing either strain. The localization pattern of active Rap1 on D. discoideum or macrophage LCVs was confirmed by fluorescence microscopy and imaging flow cytometry, and the depletion of Rap1 by RNA interference significantly reduced the intracellular growth of L. pneumophila Thus, comparative proteomics identified Rap1 as a novel LCV host component implicated in intracellular replication of L. pneumophila.


Asunto(s)
Proteínas Bacterianas/genética , Dictyostelium/metabolismo , Legionella pneumophila/fisiología , Macrófagos/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteómica/métodos , Vacuolas/microbiología , Proteínas de Unión al GTP rap1/metabolismo , Animales , Proteínas Bacterianas/metabolismo , Cromatografía Liquida , Replicación del ADN , Dictyostelium/microbiología , Eliminación de Gen , Legionella pneumophila/genética , Enfermedad de los Legionarios/microbiología , Macrófagos/microbiología , Ratones , Proteínas Protozoarias/metabolismo , Células RAW 264.7 , Espectrometría de Masas en Tándem , Vacuolas/metabolismo
17.
Am J Hum Genet ; 99(3): 555-566, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27569549

RESUMEN

Genomic imprinting is a mechanism in which gene expression varies depending on parental origin. Imprinting occurs through differential epigenetic marks on the two parental alleles, with most imprinted loci marked by the presence of differentially methylated regions (DMRs). To identify sites of parental epigenetic bias, here we have profiled DNA methylation patterns in a cohort of 57 individuals with uniparental disomy (UPD) for 19 different chromosomes, defining imprinted DMRs as sites where the maternal and paternal methylation levels diverge significantly from the biparental mean. Using this approach we identified 77 DMRs, including nearly all those described in previous studies, in addition to 34 DMRs not previously reported. These include a DMR at TUBGCP5 within the recurrent 15q11.2 microdeletion region, suggesting potential parent-of-origin effects associated with this genomic disorder. We also observed a modest parental bias in DNA methylation levels at every CpG analyzed across ∼1.9 Mb of the 15q11-q13 Prader-Willi/Angelman syndrome region, demonstrating that the influence of imprinting is not limited to individual regulatory elements such as CpG islands, but can extend across entire chromosomal domains. Using RNA-seq data, we detected signatures consistent with imprinted expression associated with nine novel DMRs. Finally, using a population sample of 4,004 blood methylomes, we define patterns of epigenetic variation at DMRs, identifying rare individuals with global gain or loss of methylation across multiple imprinted loci. Our data provide a detailed map of parental epigenetic bias in the human genome, providing insights into potential parent-of-origin effects.


Asunto(s)
Metilación de ADN/genética , Epigénesis Genética/genética , Genoma Humano/genética , Padres , Disomía Uniparental/genética , Alelos , Síndrome de Angelman/genética , Aberraciones Cromosómicas , Cromosomas Humanos/genética , Cromosomas Humanos Par 15/genética , Estudios de Cohortes , Islas de CpG/genética , Femenino , Impresión Genómica/genética , Humanos , Discapacidad Intelectual/genética , Cariotipo , Masculino , Proteínas Asociadas a Microtúbulos/genética , Síndrome de Prader-Willi/genética , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN
18.
Eur J Hum Genet ; 23(4): 466-72, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25005732

RESUMEN

The past decades have seen a remarkable shift in the demographics of childbearing in Western countries. The risk for offspring with chromosomal aneuploidies with advancing maternal age is well known, but most studies failed to demonstrate a paternal age effect. Retrospectively, we analyzed two case data sets containing parental ages from pre- and postnatal cases with trisomies 21, 13 and 18. The reference data set contains the parental ages of the general Swiss population. We dichotomized all couples into two distinct groups. In the first group, the mothers' integral age was as least as the father's age or older. We compared the frequency of cases in nine 5-year intervals of maternal age. In addition, we computed logistic regression models for the binary endpoint aneuploidy yes/no where paternal ages were incorporated as linear or quadratic, as well as smooth functions within a generalized additive model framework. We demonstrated that the proportion of younger fathers is uniformly different between cases and controls of live-born trisomy 21 as well, although not reaching significance, for fetuses over all mother's ages. Logistic regression models with different strategies to incorporate paternal ages confirmed our findings. The negative paternal age effect was also found in pre- and postnatal cases taken together with trisomies 13 and 18. The couples with younger fathers face almost twofold odds for a child with Down syndrome (DS). We estimated odds curves for parental ages. If confirmation of these findings can be achieved, the management of couples at risk needs a major correction of the risk stratification.


Asunto(s)
Aneuploidia , Edad Paterna , Adolescente , Adulto , Trastornos de los Cromosomas/genética , Cromosomas Humanos Par 13/genética , Cromosomas Humanos Par 18/genética , Demografía , Síndrome de Down/genética , Padre , Femenino , Humanos , Modelos Logísticos , Masculino , Edad Materna , Persona de Mediana Edad , Madres , Estudios Retrospectivos , Factores de Riesgo , Suiza , Trisomía/genética , Síndrome de la Trisomía 13 , Síndrome de la Trisomía 18 , Adulto Joven
19.
ACS Infect Dis ; 1(7): 327-38, 2015 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-27622823

RESUMEN

The causative agent of Legionnaires' disease, Legionella pneumophila, grows in environmental amoebae and mammalian macrophages within a distinct compartment, the 'Legionella-containing vacuole' (LCV). Intracellular bacteria are protected from many antibiotics, and thus are notoriously difficult to eradicate. To identify novel compounds that restrict intracellular bacterial replication, we previously developed an assay based on a coculture of amoebae and GFP-producing L. pneumophila. This assay was used to screen a pathway-based, highly diverse chemical library, referred to as the Sinergia library. In this work, we chose to focus on a group of 11 hit compounds, the majority of which originated from the query molecule CN585, a compound that targets the protein phosphatase calcineurin. Further studies on 78 related compound variants revealed crucial structural attributes, namely a triple-ring scaffold with a central triazine moiety, substituted in positions 3 and 5 by two piperidine or pyrrolidine rings, and in position 1 by an amine group bearing a single aliphatic chain moiety. The most effective compound, ZINC00615682, inhibited intracellular replication of L. pneumophila with an IC50 of approximately 20 nM in Acanthamoeba castellanii and slightly less efficiently in Dictyostelium discoideum or macrophages. Pharmacological and genetic attempts to implicate calcineurin in the intracellular replication of L. pneumophila failed. Taken together, these results show that the amoebae-based screen and structure-activity relationship analysis is suitable for the identification of novel inhibitors of the intracellular replication of L. pneumophila. The most potent compound identified in this study targets (an) as yet unidentified host factor(s).

20.
Oncoimmunology ; 3(8): e953410, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25960933

RESUMEN

The potentially oncogenic mevalonate pathway provides building blocks for protein prenylation and induces cell proliferation and as such is an important therapeutic target. Among mevalonate metabolites, only isopentenyl pyrophosphate (IPP) has been considered to be an immunologically relevant antigen for primate-specific, innate-like Vγ9Vδ2 T cells with antitumor potential. We show here that Vγ9Vδ2 T cells pretreated with the stress-related, inflammasome-dependent cytokine interleukin 18 (IL-18) were potently activated not only by IPP but also by all downstream isoprenoid pyrophosphates that exhibit combined features of antigens and cell-extrinsic metabolic cues. Vγ9Vδ2 T cells induced this way effectively proliferated even under severe lymphopenic conditions and the antioxidant N-acetylcysteine significantly improved reconstitution of γδ T cells predominantly with a central memory phenotype. The homeostatic cytokine IL-15 induced the differentiation of effector cells in an antigen-independent fashion, which rapidly produced abundant interferon γ (IFNγ) upon antigen re-encounter. IL-15 induced effector γδ T cells displayed increased levels of the cytotoxic lymphocyte-associated proteins CD56, CD96, CD161 and perforin. In response to stimulation with isoprenoid pyrophosphates, these effector cells upregulated surface expression of CD107a and exhibited strong cytotoxicity against tumor cells in vitro. Our data clarify understanding of innate immunosurveillance mechanisms and will facilitate the controlled generation of robust Vγ9Vδ2 T cell subsets for effective cancer immunotherapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...