Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 62(50): e202312302, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37837321

RESUMEN

The HYPNOESYS method (Hyperpolarized NOE System), which relies on the dissolution of optically polarized crystals, has recently emerged as a promising approach to enhance the sensitivity of NMR spectroscopy in the solution state. However, HYPNOESYS is a single-shot method that is not generally compatible with multidimensional NMR. Here we show that 2D NMR spectra can be obtained from HYPNOESYS-polarized samples, using single-scan acquisition methods. The approach is illustrated with a mixture of terpene molecules and a benchtop NMR spectrometer, paving the way to a sensitive, information-rich and affordable analytical method.

2.
J Phys Chem A ; 127(16): 3728-3735, 2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37053031

RESUMEN

There is a fundamental issue with the use of dynamic nuclear polarization (DNP) to enhance nuclear spin polarization: the same polarizing agent (PA) needed for DNP is also responsible for shortening the lifetime of the hyperpolarization. As a result, long-term storage and transport of hyperpolarized samples is severely restricted and the apparatus for DNP is necessarily located near or integrated with the apparatus using the hyperpolarized spins. In this paper, we demonstrate that naphthalene single crystals can serve as a long-lived reservoir of proton polarization that can be exploited to enhance signals in benchtop and high-field NMR of target molecules in solution at a site 300 km away by a factor of several thousand. The naphthalene protons are polarized using short-lived optically excited triplet states of pentacene instead of stable radicals. In the absence of optical excitation, the electron spins remain in a singlet ground state, eliminating the major pathway of nuclear spin-lattice relaxation. The polarization decays with a time constant of about 50 h at 80 K and 0.5 T or above 800 h at 5 K and 20 mT. A module based on a Halbach array yielding a field of 0.75 T and a conventional cryogenic dry shipper, operating at liquid nitrogen temperature, allows storage and long distance transport of the polarization to a remote laboratory, where the polarization of the crystal is transferred after dissolution to a target molecule of choice by intermolecular cross-relaxation. The procedure has been executed repeatedly and has proven to be reliable and robust.

3.
J Am Chem Soc ; 144(6): 2511-2519, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35113568

RESUMEN

Nuclear spin hyperpolarization provides a promising route to overcome the challenges imposed by the limited sensitivity of nuclear magnetic resonance. Here we demonstrate that dissolution of spin-polarized pentacene-doped naphthalene crystals enables transfer of polarization to target molecules via intermolecular cross-relaxation at room temperature and moderate magnetic fields (1.45 T). This makes it possible to exploit the high spin polarization of optically polarized crystals, while mitigating the challenges of its transfer to external nuclei. With this method, we inject the highly polarized mixture into a benchtop NMR spectrometer and observe the polarization dynamics for target 1H nuclei. Although the spectra are radiation damped due to the high naphthalene magnetization, we describe a procedure to process the data to obtain more conventional NMR spectra and extract the target nuclei polarization. With the entire process occurring on a time scale of 1 min, we observe NMR signals enhanced by factors between -200 and -1730 at 1.45 T for a range of small molecules.

4.
J Magn Reson ; 333: 107099, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34775282

RESUMEN

Under typical conditions for dynamic nuclear polarization (DNP)-temperature about 1 K or below and magnetic field about 3 T or higher-the polarization agent causes nuclear dipolar order to relax up to four orders of magnitude faster than nuclear polarization. However, as far as we know, this ultra-fast dipolar relaxation has thus far not been explained in a satisfactory way. We report similar ultra-fast dipolar relaxation of proton spins in naphthalene due to the photo-excited triplet spin of pentacene and propose a three-step mechanism that explains such ultra-fast dipolar relaxation by ground state electron spins as well as by photo-excited triplet spins: nuclear spin diffusion transfers nuclear dipolar order-that is nuclear dipolar energy-spatially to near the electron spins. Flip-flop transitions between nuclear spins near the electron spins convert this dipolar energy into electron-nuclear interaction energy. Finally electron spin-lattice relaxation or decay of the triplet spin transfers the latter type of energy to the lattice. We will show that this mechanism quantitatively explains the observed dipolar relaxation rate. The proposed mechanism is expected to contribute to dipolar relaxation in any spin system containing more than one spin species. It tends to create a stationary state, in which all dipolar interactions are combined in a single energy reservoir described by a single spin temperature. As an example we suggest that the addition of a relaxation agent in samples used for DNP may significantly accelerate the relaxation of the dipolar energy of the polarization agent, and as a result could possibly reduce the contribution of thermal mixing (TM) to DNP.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA