Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
JCI Insight ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38780544

RESUMEN

Caloric restriction improves metabolic health, but is often complicated by bone loss. We studied bone parameters in humans during a 10-day fast and identified candidate metabolic regulators of bone turnover. P1NP, a bone formation marker, decreased within 3 days of fasting. Whereas dual-energy X-ray absorptiometry measures of bone mineral density were unchanged after 10 days of fasting, high-resolution peripheral quantitative CT demonstrated remodeling of bone microarchitecture. Pathway analysis of longitudinal metabolomics data identified one-carbon metabolism as fasting-dependent. In cultured osteoblasts, we tested the functional significance of one-carbon metabolites modulated by fasting, finding that methionine - which surged after 3 days of fasting - impacted markers of osteoblast cell state in a concentration dependent manner, in some instances exhibiting a U-shaped response with both low and high concentrations driving putative anti-bone responses. Administration of methionine to mice for 5 days recapitulated some fasting effects on bone, including a reduction in serum P1NP. In conclusion, a 10-day fast in humans led to remodeling of bone microarchitecture, potentially mediated by a surge in circulating methionine. These data support an emerging model that points to a window of optimal methionine exposure for bone health.

2.
Cell Metab ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38701775

RESUMEN

Perivascular collagen deposition by activated fibroblasts promotes vascular stiffening and drives cardiovascular diseases such as pulmonary hypertension (PH). Whether and how vascular fibroblasts rewire their metabolism to sustain collagen biosynthesis remains unknown. Here, we found that inflammation, hypoxia, and mechanical stress converge on activating the transcriptional coactivators YAP and TAZ (WWTR1) in pulmonary arterial adventitial fibroblasts (PAAFs). Consequently, YAP and TAZ drive glutamine and serine catabolism to sustain proline and glycine anabolism and promote collagen biosynthesis. Pharmacologic or dietary intervention on proline and glycine anabolic demand decreases vascular stiffening and improves cardiovascular function in PH rodent models. By identifying the limiting metabolic pathways for vascular collagen biosynthesis, our findings provide guidance for incorporating metabolic and dietary interventions for treating cardiopulmonary vascular disease.

3.
bioRxiv ; 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38712233

RESUMEN

Myofibroblast differentiation, essential for driving extracellular matrix synthesis in pulmonary fibrosis, requires increased glycolysis. While glycolytic cells must export lactate, the contributions of lactate transporters to myofibroblast differentiation are unknown. In this study, we investigated how MCT1 and MCT4, key lactate transporters, influence myofibroblast differentiation and experimental pulmonary fibrosis. Our findings reveal that inhibiting MCT1 or MCT4 reduces TGFß-stimulated pulmonary myofibroblast differentiation in vitro and decreases bleomycin-induced pulmonary fibrosis in vivo. Through comprehensive metabolic analyses, including bioenergetics, stable isotope tracing, metabolomics, and imaging mass spectrometry in both cells and mice, we demonstrate that inhibiting lactate transport enhances oxidative phosphorylation, reduces reactive oxygen species production, and diminishes glucose metabolite incorporation into fibrotic lung regions. Furthermore, we introduce VB253, a novel MCT4 inhibitor, which ameliorates pulmonary fibrosis in both young and aged mice, with comparable efficacy to established antifibrotic therapies. These results underscore the necessity of lactate transport for myofibroblast differentiation, identify MCT1 and MCT4 as promising pharmacologic targets in pulmonary fibrosis, and support further evaluation of lactate transport inhibitors for patients for whom limited therapeutic options currently exist.

4.
PLoS One ; 19(1): e0295651, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38271331

RESUMEN

BACKGROUND: We have developed a new clinical research approach for the quantification of cellular proliferation in human infants to address unanswered questions about tissue renewal and regeneration. The approach consists of oral 15N-thymidine administration to label cells in S-phase, followed by Multi-isotope Imaging Mass Spectrometry for detection of the incorporated label in cell nuclei. To establish the approach, we performed an observational study to examine uptake and elimination of 15N-thymidine. We compared at-home label administration with in-hospital administration in infants with tetralogy of Fallot, a form of congenital heart disease, and infants with heart failure. METHODS: We examined urine samples from 18 infants who received 15N-thymidine (50 mg/kg body weight) by mouth for five consecutive days. We used Isotope Ratio Mass Spectrometry to determine enrichment of 15N relative to 14N (%) in urine. RESULTS/FINDINGS: 15N-thymidine dose administration produced periodic rises of 15N enrichment in urine. Infants with tetralogy of Fallot had a 3.2-fold increase and infants with heart failure had a 4.3-fold increase in mean peak 15N enrichment over baseline. The mean 15N enrichment was not statistically different between the two patient populations (p = 0.103). The time to peak 15N enrichment in tetralogy of Fallot infants was 6.3 ± 1 hr and in infants with heart failure 7.5 ± 2 hr (mean ± SEM). The duration of significant 15N enrichment after a dose was 18.5 ± 1.7 hr in tetralogy of Fallot and in heart failure 18.2 ± 1.8 hr (mean ± SEM). The time to peak enrichment and duration of enrichment were also not statistically different (p = 0.617 and p = 0.887). CONCLUSIONS: The presented results support two conclusions of significance for future applications: (1) Demonstration that 15N-thymidine label administration at home is equivalent to in-hospital administration. (2) Two different types of heart disease show no differences in 15N-thymidine absorption and elimination. This enables the comparative analysis of cellular proliferation between different types of heart disease.


Asunto(s)
Insuficiencia Cardíaca , Tetralogía de Fallot , Humanos , Tetralogía de Fallot/tratamiento farmacológico , Isótopos de Nitrógeno , Administración Oral , Boca , Insuficiencia Cardíaca/tratamiento farmacológico
5.
JCI Insight ; 8(17)2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37681409

RESUMEN

The identity and origin of the stem/progenitor cells for adult joint cartilage repair remain unknown, impeding therapeutic development. Simulating the common therapeutic modality for cartilage repair in humans, i.e., full-thickness microfracture joint surgery, we combined the mouse full-thickness injury model with lineage tracing and identified a distinct skeletal progenitor cell type enabling long-term (beyond 7 days after injury) articular cartilage repair in vivo. Deriving from a population with active Prg4 expression in adulthood while lacking aggrecan expression, these progenitors proliferate, differentiate to express aggrecan and type II collagen, and predominate in long-term articular cartilage wounds, where they represent the principal repair progenitors in situ under native repair conditions without cellular transplantation. They originate outside the adult bone marrow or superficial zone articular cartilage. These findings have implications for skeletal biology and regenerative medicine for joint injury repair.


Asunto(s)
Cartílago Articular , Adulto , Humanos , Animales , Ratones , Agrecanos , Colágeno Tipo II , Modelos Animales de Enfermedad , Células Madre , Proteoglicanos
6.
bioRxiv ; 2023 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-37205600

RESUMEN

While circadian rhythms are entrained to the once daily light-dark cycle of the sun, many marine organisms exhibit ~12h ultradian rhythms corresponding to the twice daily movement of the tides. Although human ancestors emerged from circatidal environment millions of years ago, direct evidence of ~12h ultradian rhythms in humans is lacking. Here, we performed prospective, temporal transcriptome profiling of peripheral white blood cells and identified robust ~12h transcriptional rhythms from three healthy participants. Pathway analysis implicated ~12h rhythms in RNA and protein metabolism, with strong homology to the circatidal gene programs previously identified in Cnidarian marine species. We further observed ~12h rhythms of intron retention events of genes involved in MHC class I antigen presentation, synchronized to expression of mRNA splicing genes in all three participants. Gene regulatory network inference revealed XBP1, and GABP and KLF transcription factor family members as potential transcriptional regulators of human ~12h rhythms. These results suggest that human ~12h biological rhythms have a primordial evolutionary origin with important implications for human health and disease.

7.
JCI Insight ; 8(4)2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36626231

RESUMEN

In pulmonary arterial hypertension (PAH), inflammation promotes a fibroproliferative pulmonary vasculopathy. Reductionist studies emphasizing single biochemical reactions suggest a shift toward glycolytic metabolism in PAH; however, key questions remain regarding the metabolic profile of specific cell types within PAH vascular lesions in vivo. We used RNA-Seq to profile the transcriptome of pulmonary artery endothelial cells (PAECs) freshly isolated from an inflammatory vascular injury model of PAH ex vivo, and these data were integrated with information from human gene ontology pathways. Network medicine was then used to map all aa and glucose pathways to the consolidated human interactome, which includes data on 233,957 physical protein-protein interactions. Glucose and proline pathways were significantly close to the human PAH disease module, suggesting that these pathways are functionally relevant to PAH pathobiology. To test this observation in vivo, we used multi-isotope imaging mass spectrometry to map and quantify utilization of glucose and proline in the PAH pulmonary vasculature at subcellular resolution. Our findings suggest that elevated glucose and proline avidity underlie increased biomass in PAECs and the media of fibrosed PAH pulmonary arterioles. Overall, these data show that anabolic utilization of glucose and proline are fundamental to the vascular pathology of PAH.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Humanos , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/patología , Hipertensión Pulmonar/metabolismo , Células Endoteliales/metabolismo , Biomasa , Arteria Pulmonar/patología
8.
Circulation ; 146(5): 412-426, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35862076

RESUMEN

BACKGROUND: The human heart has limited capacity to generate new cardiomyocytes and this capacity declines with age. Because loss of cardiomyocytes may contribute to heart failure, it is crucial to explore stimuli of endogenous cardiac regeneration to favorably shift the balance between loss of cardiomyocytes and the birth of new cardiomyocytes in the aged heart. We have previously shown that cardiomyogenesis can be activated by exercise in the young adult mouse heart. Whether exercise also induces cardiomyogenesis in aged hearts, however, is still unknown. Here, we aim to investigate the effect of exercise on the generation of new cardiomyocytes in the aged heart. METHODS: Aged (20-month-old) mice were subjected to an 8-week voluntary running protocol, and age-matched sedentary animals served as controls. Cardiomyogenesis in aged hearts was assessed on the basis of 15N-thymidine incorporation and multi-isotope imaging mass spectrometry. We analyzed 1793 cardiomyocytes from 5 aged sedentary mice and compared these with 2002 cardiomyocytes from 5 aged exercised mice, followed by advanced histology and imaging to account for ploidy and nucleation status of the cell. RNA sequencing and subsequent bioinformatic analyses were performed to investigate transcriptional changes induced by exercise specifically in aged hearts in comparison with young hearts. RESULTS: Cardiomyogenesis was observed at a significantly higher frequency in exercised compared with sedentary aged hearts on the basis of the detection of mononucleated/diploid 15N-thymidine-labeled cardiomyocytes. No mononucleated/diploid 15N-thymidine-labeled cardiomyocyte was detected in sedentary aged mice. The annual rate of mononucleated/diploid 15N-thymidine-labeled cardiomyocytes in aged exercised mice was 2.3% per year. This compares with our previously reported annual rate of 7.5% in young exercised mice and 1.63% in young sedentary mice. Transcriptional profiling of young and aged exercised murine hearts and their sedentary controls revealed that exercise induces pathways related to circadian rhythm, irrespective of age. One known oscillating transcript, however, that was exclusively upregulated in aged exercised hearts, was isoform 1.4 of regulator of calcineurin, whose regulation and functional role were explored further. CONCLUSIONS: Our data demonstrate that voluntary running in part restores cardiomyogenesis in aged mice and suggest that pathways associated with circadian rhythm may play a role in physiologically stimulated cardiomyogenesis.


Asunto(s)
Miocitos Cardíacos , Condicionamiento Físico Animal , Animales , Calcineurina/metabolismo , Humanos , Lactante , Ratones , Miocitos Cardíacos/citología , Timidina/metabolismo
9.
Diabetes ; 71(3): 412-423, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35040481

RESUMEN

Adipose tissue (AT) expands by a combination of two fundamental cellular mechanisms: hypertrophic growth of existing adipocytes or through generation of new adipocytes, also known as hyperplastic growth. Multiple lines of evidence suggest a limited capacity for hyperplastic growth of AT in adulthood and that adipocyte number is relatively stable, even with fluctuations in AT mass. If the adipocyte number is stable in adulthood, despite well-documented birth and death of adipocytes, then this would suggest that birth may be coupled to death in a regenerative cycle. To test this hypothesis, we examined the dynamics of birth of new fat cells in relationship to adipocyte death by using high-fidelity stable isotope tracer methods in C57Bl6 mice. We discovered birth of new adipocytes at higher frequency in histological proximity to dead adipocytes. In diet-induced obesity, adipogenesis surged after an adipocyte death peak beyond 8 weeks of high-fat feeding. Through transcriptional analyses of AT and fractionated adipocytes, we found that the dominant cell death signals were inflammasome related. Proinflammatory signals were particularly evident in hypertrophied adipocytes or with deletion of a constitutive oxygen sensor and inhibitor of hypoxia-inducible factor, Egln1. We leveraged the potential role for the inflammasome in adipocyte death to test the adipocyte death-birth hypothesis, finding that caspase 1 loss of function attenuated adipocyte death and birth in murine visceral AT. These data collectively point to a regenerative cycle of adipocyte death and birth as a driver of adipogenesis in adult murine AT.


Asunto(s)
Adipocitos/fisiología , Adipogénesis/fisiología , Muerte Celular , Inflamación/fisiopatología , Grasa Intraabdominal/fisiopatología , Obesidad/fisiopatología , Células 3T3-L1 , Animales , Caspasa 1/genética , Caspasa 1/fisiología , Dieta Alta en Grasa , Hipertrofia , Inflamasomas/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/etiología
10.
Int J Cardiol ; 339: 36-42, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34265312

RESUMEN

BACKGROUND: Patients with Tetralogy of Fallot with pulmonary stenosis (ToF/PS), the most common form of cyanotic congenital heart disease (CHD), develop adverse right ventricular (RV) remodeling, leading to late heart failure and arrhythmia. We recently demonstrated that overactive ß-adrenergic receptor signaling inhibits cardiomyocyte division in ToF/PS infants, providing a conceptual basis for the hypothesis that treatment with the ß-adrenergic receptor blocker, propranolol, early in life would increase cardiomyocyte division. No data are available in ToF/PS infants on the efficacy of propranolol as a possible novel therapeutic option to increase cardiomyocyte division and potentially reduce adverse RV remodeling. METHODS: Using a randomized, double-blind, placebo-controlled trial, we will evaluate the effect of propranolol administration on reactivating cardiomyocyte proliferation to prevent adverse RV remodeling in 40 infants with ToF/PS. Propranolol administration (1 mg/kg po QID) will begin at 1 month of age and last until surgical repair. The primary endpoint is cardiomyocyte division, quantified after 15N-thymidine administration with Multi-isotope Imaging Mass Spectrometry (MIMS) analysis of resected myocardial specimens. The secondary endpoints are changes in RV myocardial and cardiomyocyte hypertrophy. CONCLUSION: This trial will be the first study in humans to assess whether cardiomyocyte proliferation can be pharmacologically increased. If successful, the results could introduce a paradigm shift in the management of patients with ToF/PS from a purely surgical approach, to synergistic medical and surgical management. It will provide the basis for future multi-center randomized controlled trials of propranolol administration in infants with ToF/PS and other types of CHD with RV hypertension. CLINICAL TRIAL REGISTRATION: The trial protocol was registered at clinicaltrials.gov (NCT04713657).


Asunto(s)
Estenosis de la Válvula Pulmonar , Tetralogía de Fallot , Humanos , Lactante , Miocitos Cardíacos , Ensayos Clínicos Controlados Aleatorios como Asunto , Receptores Adrenérgicos beta 2 , Tetralogía de Fallot/diagnóstico por imagen , Tetralogía de Fallot/cirugía , Remodelación Ventricular
11.
Nat Protoc ; 16(4): 1995-2022, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33627842

RESUMEN

Quantification of cellular proliferation in humans is important for understanding biology and responses to injury and disease. However, existing methods require administration of tracers that cannot be ethically administered in humans. We present a protocol for the direct quantification of cellular proliferation in human hearts. The protocol involves administration of non-radioactive, non-toxic stable isotope 15Nitrogen-enriched thymidine (15N-thymidine), which is incorporated into DNA during S-phase, in infants with tetralogy of Fallot, a common form of congenital heart disease. Infants with tetralogy of Fallot undergo surgical repair, which requires the removal of pieces of myocardium that would otherwise be discarded. This protocol allows for the quantification of cardiomyocyte proliferation in this discarded tissue. We quantitatively analyzed the incorporation of 15N-thymidine with multi-isotope imaging spectrometry (MIMS) at a sub-nuclear resolution, which we combined with correlative confocal microscopy to quantify formation of binucleated cardiomyocytes and cardiomyocytes with polyploid nuclei. The entire protocol spans 3-8 months, which is dependent on the timing of surgical repair, and 3-4.5 researcher days. This protocol could be adapted to study cellular proliferation in a variety of human tissues.


Asunto(s)
División Celular , Marcaje Isotópico/métodos , Espectrometría de Masas/métodos , Miocitos Cardíacos/citología , Timidina/metabolismo , Núcleo Celular/metabolismo , Proliferación Celular , Femenino , Feto/citología , Humanos , Imagenología Tridimensional , Lactante , Leucocitos/citología , Miocardio/citología , Isótopos de Nitrógeno/orina , Ploidias , Embarazo , Sarcómeros/metabolismo , Tetralogía de Fallot/patología
12.
Methods Mol Biol ; 2158: 257-268, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32857379

RESUMEN

The quantification of cell cycle activity is a prerequisite to defining the dynamics and scope of organ development or regeneration. Multi-isotope imaging mass spectrometry (MIMS) merges stable isotope tracers with an imaging mass spectrometry platform called NanoSIMS, which can quantitatively measure the incorporation of stable isotope tracers with high precision in suborganelle domains. MIMS has been applied to quantify the dynamics of postnatal cardiogenesis and mammalian cardiomyocyte regeneration during aging or in response to injury. Here, we present an approach to the conduct of MIMS experiments, with an emphasis on the application to the field of cardiac regeneration; however, the approach is also applicable, with, at most, minor modifications to broader biological questions.


Asunto(s)
Ciclo Celular , Diagnóstico por Imagen/métodos , Marcaje Isotópico/métodos , Espectrometría de Masas/métodos , Miocitos Cardíacos/fisiología , Regeneración , Animales , División Celular , Ratones , Miocitos Cardíacos/citología
13.
Cell Syst ; 12(2): 141-158.e9, 2021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33326751

RESUMEN

Compromised protein homeostasis underlies accumulation of plaques and tangles in Alzheimer's disease (AD). To observe protein turnover at early stages of amyloid beta (Aß) proteotoxicity, we performed pulse-chase proteomics on mouse brains in three genetic models of AD that knock in alleles of amyloid precursor protein (APP) prior to the accumulation of plaques and during disease progression. At initial stages of Aß accumulation, the turnover of proteins associated with presynaptic terminals is selectively impaired. Presynaptic proteins with impaired turnover, particularly synaptic vesicle (SV)-associated proteins, have elevated levels, misfold in both a plaque-dependent and -independent manner, and interact with APP and Aß. Concurrent with elevated levels of SV-associated proteins, we found an enlargement of the SV pool as well as enhancement of presynaptic potentiation. Together, our findings reveal that the presynaptic terminal is particularly vulnerable and represents a critical site for manifestation of initial AD etiology. A record of this paper's transparent peer review process is included in the Supplemental Information.


Asunto(s)
Enfermedad de Alzheimer/genética , Terminales Presinápticos/metabolismo , Proteómica/métodos , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos
14.
Mol Metab ; 42: 101082, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32992039

RESUMEN

OBJECTIVE: The human adaptive fasting response enables survival during periods of caloric deprivation. A crucial component of the fasting response is the shift from glucose metabolism to utilization of lipids, underscoring the importance of adipose tissue as the central lipid-storing organ. The objective of this study was to investigate the response of adipose tissue to a prolonged fast in humans. METHODS: We performed RNA sequencing of subcutaneous adipose tissue samples longitudinally collected during a 10-day, 0-calorie fast in humans. We further investigated observed transcriptional signatures utilizing cultured human monocytes and Thp1 cells. We examined the cellularity of adipose tissue biopsies with transmission electron microscopy and tested for associated changes in relevant inflammatory mediators in the systemic circulation by ELISA assays of longitudinally collected blood samples. RESULTS: Coincident with the expected shift away from glucose utilization and lipid storage, we demonstrated downregulation of pathways related to glycolysis, oxidative phosphorylation, and lipogenesis. The canonical lipolysis pathway was also downregulated, whereas fasting drove alternative lysosomal paths to lipid digestion. Unexpectedly, the dominant induced pathways were associated with immunity and inflammation, although this only became evident at the 10-day time point. Among the most augmented transcripts were those associated with macrophage identity and function, such as members of the erythroblast transformation-specific (ETS) transcription factor family. Key components of the macrophage transcriptional signal in fasting adipose tissue were recapitulated with induced expression of two of the ETS transcription factors via cultured macrophages, SPIC and SPI1. The inflammatory signal was further reflected by an increase in systemic inflammatory mediators. CONCLUSIONS: Collectively, this study demonstrates an unexpected role of metabolic inflammation in the human adaptive fasting response.


Asunto(s)
Tejido Adiposo/metabolismo , Ayuno/metabolismo , Inflamación/metabolismo , Tejido Adiposo/inmunología , Adulto , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/fisiología , Ayuno/fisiología , Femenino , Expresión Génica/genética , Regulación de la Expresión Génica/genética , Humanos , Inflamación/inmunología , Insulina/metabolismo , Resistencia a la Insulina , Metabolismo de los Lípidos/fisiología , Lipogénesis , Lipólisis/fisiología , Macrófagos , Masculino , Obesidad/metabolismo , Grasa Subcutánea/metabolismo , Factores de Transcripción/metabolismo
15.
iScience ; 23(8): 101355, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32712466

RESUMEN

Malignant tumors exhibit high degrees of genomic heterogeneity at the cellular level, leading to the view that subpopulations of tumor cells drive growth and treatment resistance. To examine the degree to which tumors also exhibit metabolic heterogeneity at the level of individual cells, we employed multi-isotope imaging mass spectrometry (MIMS) to quantify utilization of stable isotopes of glucose and glutamine along with a label for cell division. Mouse models of melanoma and malignant peripheral nerve sheath tumors (MPNSTs) exhibited striking heterogeneity of substrate utilization, evident in both proliferating and non-proliferating cells. We identified a correlation between metabolic heterogeneity, proliferation, and therapeutic resistance. Heterogeneity in metabolic substrate usage as revealed by incorporation of glucose and glutamine tracers is thus a marker for tumor proliferation. Collectively, our data demonstrate that MIMS provides a powerful tool with which to dissect metabolic functions of individual cells within the native tumor environment.

16.
Curr Protoc Cell Biol ; 88(1): e111, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32706155

RESUMEN

Incorporation of a stable-isotope metabolic tracer into cells or tissue can be followed at submicron resolution by multi-isotope imaging mass spectrometry (MIMS), a form of imaging secondary ion microscopy optimized for accurate isotope ratio measurement from microvolumes of sample (as small as ∼30 nm across). In a metabolic MIMS experiment, a cell or animal is metabolically labeled with a tracer containing a stable isotope. Relative accumulation of the heavy isotope in the fixed sample is then measured as an increase over its natural abundance by MIMS. MIMS has been used to measure protein turnover in single organelles, track cellular division in vivo, visualize sphingolipid rafts on the plasma membrane, and measure dopamine incorporation into dense-core vesicles, among other biological applications. In this article, we introduce metabolic analysis using NanoSIMS by focusing on two specific applications: quantifying protein turnover in single organelles of cultured cells and tracking cell replication in mouse tissues in vivo. These examples illustrate the versatility of metabolic analysis with MIMS. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Metabolic labeling for MIMS Basic Protocol 2: Embedding of samples for correlative transmission electron microscopy and MIMS with a genetically encoded reporter Alternate Protocol: Embedding of samples for correlative light microscopy and MIMS Support Protocol: Preparation of silicon wafers as sample supports for MIMS Basic Protocol 3: Analysis of MIMS data.


Asunto(s)
División Celular/fisiología , Espectrometría de Masas , Orgánulos/patología , Animales , Línea Celular , Membrana Celular/patología , Células Cultivadas , Isótopos , Espectrometría de Masas/métodos , Ratones , Proteolisis
17.
J Clin Invest ; 130(5): 2252-2269, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32202514

RESUMEN

Prenatal alcohol exposure (PAE) affects at least 10% of newborns globally and leads to the development of fetal alcohol spectrum disorders (FASDs). Despite its high incidence, there is no consensus on the implications of PAE on metabolic disease risk in adults. Here, we describe a cohort of adults with FASDs that had an increased incidence of metabolic abnormalities, including type 2 diabetes, low HDL, high triglycerides, and female-specific overweight and obesity. Using a zebrafish model for PAE, we performed population studies to elucidate the metabolic disease seen in the clinical cohort. Embryonic alcohol exposure (EAE) in male zebrafish increased the propensity for diet-induced obesity and fasting hyperglycemia in adulthood. We identified several consequences of EAE that may contribute to these phenotypes, including a reduction in adult locomotor activity, alterations in visceral adipose tissue and hepatic development, and persistent diet-responsive transcriptional changes. Taken together, our findings define metabolic vulnerabilities due to EAE and provide evidence that behavioral changes and primary organ dysfunction contribute to resultant metabolic abnormalities.


Asunto(s)
Diabetes Mellitus Tipo 2 , Trastornos del Espectro Alcohólico Fetal , Obesidad , Efectos Tardíos de la Exposición Prenatal , Adulto , Animales , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Femenino , Trastornos del Espectro Alcohólico Fetal/metabolismo , Trastornos del Espectro Alcohólico Fetal/patología , Humanos , Recién Nacido , Grasa Intraabdominal/metabolismo , Grasa Intraabdominal/patología , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Transgénicos , Obesidad/etiología , Obesidad/metabolismo , Obesidad/patología , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/patología , Sistema de Registros , Pez Cebra
19.
J Cell Biol ; 219(1)2020 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-31719114

RESUMEN

Quantification of stable isotope tracers after metabolic labeling provides a snapshot of the dynamic state of living cells and tissue. A form of imaging mass spectrometry quantifies isotope ratios with a lateral resolution <50 nm, using a methodology that we refer to as multi-isotope imaging mass spectrometry (MIMS). Despite lateral resolution exceeding diffraction-limited light microscopy, lack of contrast has largely limited use of MIMS to large or specialized subcellular structures, such as the nucleus and stereocilia. In this study, we repurpose the engineered peroxidase APEX2 as the first genetically encoded marker for MIMS. Coupling APEX2 labeling of lysosomes and metabolic labeling of protein, we identify that individual lysosomes exhibit substantial heterogeneity in protein age, which is lost in iPSC-derived neurons lacking the lysosomal protein progranulin. This study expands the practical use of MIMS for cell biology by enabling measurements of metabolic function from stable isotope labeling within individual organelles in situ.


Asunto(s)
ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Marcaje Isotópico/métodos , Lisosomas/metabolismo , Espectrometría de Masas/métodos , Neuronas/metabolismo , Orgánulos/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/análisis , Células HeLa , Humanos , Células Madre Pluripotentes Inducidas/citología , Neuronas/citología , Proteolisis
20.
Sci Transl Med ; 11(513)2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31597755

RESUMEN

One million patients with congenital heart disease (CHD) live in the United States. They have a lifelong risk of developing heart failure. Current concepts do not sufficiently address mechanisms of heart failure development specifically for these patients. Here, analysis of heart tissue from an infant with tetralogy of Fallot with pulmonary stenosis (ToF/PS) labeled with isotope-tagged thymidine demonstrated that cardiomyocyte cytokinesis failure is increased in this common form of CHD. We used single-cell transcriptional profiling to discover that the underlying mechanism of cytokinesis failure is repression of the cytokinesis gene ECT2, downstream of ß-adrenergic receptors (ß-ARs). Inactivation of the ß-AR genes and administration of the ß-blocker propranolol increased cardiomyocyte division in neonatal mice, which increased the number of cardiomyocytes (endowment) and conferred benefit after myocardial infarction in adults. Propranolol enabled the division of ToF/PS cardiomyocytes in vitro. These results suggest that ß-blockers could be evaluated for increasing cardiomyocyte division in patients with ToF/PS and other types of CHD.


Asunto(s)
Citocinesis/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Receptores Adrenérgicos beta/metabolismo , Antagonistas Adrenérgicos beta/farmacología , Animales , Animales Recién Nacidos , Proliferación Celular/efectos de los fármacos , Humanos , Ratones , Miocitos Cardíacos/efectos de los fármacos , Propranolol/farmacología , Proteínas Proto-Oncogénicas/metabolismo , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...