Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
2.
Commun Med (Lond) ; 3(1): 163, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37945799

RESUMEN

BACKGROUND: Since the 1960s, the origins of intracranial aneurysm bruits and musical murmurs have been debated, with proposed mechanisms ranging from self-excitation (i.e., resonance) by stable pulsatile flow, to vibration caused by unstable (laminar vortex shedding or turbulent) flow. This knowledge gap has impeded the use of intracranial sounds a marker of aneurysm remodelling or rupture risk. New computational techniques now allow us to model these phenomena. METHODS: We performed high-fidelity fluid-structure interaction simulations capable of understanding the magnitude and mechanisms of such flow-induced vibrations, under pulsatile flow conditions. Six cases from a previous cohort were used. RESULTS: In five cases, underlying flow instabilities present as broad-band, random vibrations, consistent with previously-described bruits, while the sac also exhibits resonance, rocking back and forth in different planes of motion, consistent with previously described musical murmurs. Both types of vibration have amplitudes in the range of 0.1 to 1 µm. The murmurs extend into diastole, after the underlying flow instability has dissipated, and do not exhibit the characteristic repeating frequency harmonics of previously hypothesized vortex-shedding mechanisms. The remaining case with stable pulsatile flow does not vibrate. Spectrograms of the simulated vibrations are consistent with previously reported microphone and Doppler ultrasound recordings. CONCLUSIONS: Our results provide a plausible explanation for distinct intracranial aneurysm sounds and characterize the mechanical environment of a vibrating aneurysm wall. Future work should aim to quantify the deleterious effects of these overlooked stimuli on the vascular wall, to determine which changes to the wall makeup are associated with vibration.


Brain aneurysms are weak areas of an artery in the brain that form a bulge. Most aneurysms do not rupture, but when they do, most patients die or are severely disabled. Unruptured aneurysms are often found by chance, but the risk of complications from treating them can be higher than the risk of rupture. Aneurysms are known to produce sounds, but the connection between the sounds and the resulting vibrations that may further weaken the artery wall are poorly understood. In this study, we modelled the possible vibration of aneurysm walls during turbulent blood flow. The frequency patterns of the vibrations were consistent with sound recordings obtained from patients. Our findings could enable potentially problematic aneurysms to be more easily identified in the future.

3.
J Am Heart Assoc ; 12(20): e031832, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37830353

RESUMEN

Background Adaptive arterial remodeling caused by flow reduction from downstream stenosis has been demonstrated in animal studies. The authors sought to determine whether inward remodeling from downstream stenosis also occurs in humans and is detectable by ex vacuo expansion of the Rektorzik venous plexus (RVP) surrounding the petrous internal carotid artery. Methods and Results The authors analyzed 214 intracranial magnetic resonance imaging examinations that included contrast-enhanced vessel wall imaging. RVP symmetry was qualitatively assessed on vessel wall imaging. RVP thickness (RVPT) was measured on the thicker side if asymmetric or randomly assigned side if symmetric. Maximum stenosis (M1 or intracranial internal carotid artery) was measured. Posterior communicating artery and A1 diameters (>1.0 mm and 1.5 mm, respectively) defined adequate collateral outflow when proximal to the stenosis. Seventy-two patients had stenosis downstream from RVPT measurements. For those without adequate outflow (38 of 72), 95.0% with RVPT ≥1.0 mm had ≥50% stenosis compared with only 5.6% with RVPT <1.0 mm. For these 72 patients, higher RVPT (RVPT ≥1.0 mm versus <1.0 mm) and absent adequate outflow were associated with greater downstream stenosis (P<0.001) using multivariate regression. For patients with downstream stenosis without adequate outflow, asymmetric RVP thickening was associated with greater ipsilateral stenosis (P<0.001, all had ≥46% stenosis) when stenosis was unilateral and greater differences in stenosis between sides (P=0.005) when stenosis was bilateral. Conclusions Inward internal carotid artery remodeling measured by RVPT or RVP asymmetry occurs as downstream stenosis approaches 50%, unless flow is preserved through a sufficiently sized posterior communicating artery or A1, and may serve as a functional measure of substantial flow reduction from downstream stenosis.


Asunto(s)
Estenosis Carotídea , Remodelación Vascular , Humanos , Constricción Patológica , Estenosis Carotídea/complicaciones , Arteria Carótida Interna/diagnóstico por imagen , Imagen por Resonancia Magnética
4.
Comput Methods Programs Biomed ; 241: 107762, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37598472

RESUMEN

BACKGROUND AND OBJECTIVE: Vessel geometry and hemodynamics are intrinsically linked, whereby geometry determines hemodynamics, and hemodynamics influence vascular remodeling. Both have been used for testing clinical outcomes, but geometry/morphology generally has less uncertainty than hemodynamics derived from medical image-based computational fluid dynamics (CFD). To provide clinical utility, CFD-based hemodynamic parameters must be robust to modeling errors and/or uncertainties, but must also provide useful information not more-easily extracted from shape alone. The objective of this study was to methodically assess the response of hemodynamic parameters to gradual changes in shape created using an unsupervised 3D shape interpolation method. METHODS: We trained the neural network NeuroMorph on 3 patient-derived intracranial aneurysm surfaces (labelled A, B, C), and then generated 3 distinct morph sequences (A→B, B→C, C→A) each containing 10 interpolated surfaces. From high-fidelity CFD simulation of these, we calculated a variety of common reduced hemodynamic parameters, including many previously associated with aneurysm rupture, and analyzed their responses to changes in shape, and their correlations. RESULTS: The interpolated surfaces demonstrate complex, gradual changes in branch angles, vessel diameters, and aneurysm morphology. CFD simulation showed gradual changes in aneurysm jetting characteristics and wall-shear stress (WSS) patterns, but demonstrated a range of responses from the reduced hemodynamic parameters. Spatially and temporally averaged parameters including time-averaged WSS, time-averaged velocity, and low-shear area (LSA) showed low variation across all morph sequences, while parameters of flow complexity such as oscillatory shear, spectral broadening, and spectral bandedness indices showed high variation between slightly-altered neighboring surfaces. Correlation analysis revealed a great deal of mutual information with easier-to-measure shape-based parameters. CONCLUSIONS: In the absence of large clinical datasets, unsupervised shape interpolation provides an ideal laboratory for exploring the delicate balance between robustness and sensitivity of nominal hemodynamic predictors of aneurysm rupture. Parameters like time-averaged WSS and LSA that are highly "robust" may, as a result, be effectively redundant to morphological predictors, whereas more sensitive parameters may be too uncertain for practical clinical use. Understanding these sensitivities may help identify parameters that are capable of providing added value to rupture risk assessment.


Asunto(s)
Aneurisma Intracraneal , Humanos , Aneurisma Intracraneal/diagnóstico por imagen , Simulación por Computador , Hemodinámica , Hidrodinámica , Redes Neurales de la Computación
6.
Biomech Model Mechanobiol ; 22(3): 761-771, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36864365

RESUMEN

Clinical, experimental, and recent computational studies have demonstrated the presence of wall vibrations in cerebral aneurysms, thought to be induced by blood flow instability. These vibrations could induce irregular, high-rate deformation of the aneurysm wall, and potentially disrupt regular cell behavior and promote deleterious wall remodeling. In order to elucidate, for the first time, the onset and nature of such flow-induced vibrations, in this study we imposed a linearly increasing flow rate on high-fidelity fluid-structure interaction models of three anatomically realistic aneurysm geometries. Prominent narrow-band vibrations in the range of 100-500 Hz were found in two out of the three aneurysm geometries tested, while the case that did not exhibit flow instability did not vibrate. Aneurysm vibrations consisted mostly of fundamental modes of the entire aneurysm sac, with the vibrations exhibiting more frequency content at higher frequencies than the flow instabilities driving those vibrations. The largest vibrations occurred in the case which exhibited strongly banded fluid frequency content, and the vibration amplitude was highest when the strongest fluid frequency band was an integer multiple of one of the natural frequencies of the aneurysm sac. Lower levels of vibration occurred in the case which exhibited turbulent-like flow with no distinct frequency bands. The current study provides a plausible mechanistic explanation for the high-frequency sounds observed in cerebral aneurysms, and suggests that narrow-band (vortex-shedding type) flow might stimulate the wall more, or at least at lower flow rates, than broad-band, turbulent-like flow.


Asunto(s)
Aneurisma Intracraneal , Humanos , Vibración , Hemodinámica , Sonido , Modelos Cardiovasculares
8.
J Biomech Eng ; 145(7)2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-36752715

RESUMEN

Computational fluid dynamics (CFD) of cerebral venous flows has become popular owing to the possibility of using local hemodynamics and hemoacoustics to help diagnose and plan treatments for venous diseases of the brain. Lumen geometries in low-pressure cerebral veins are different from those in cerebral arteries, often exhibiting fenestrations and flattened or triangular cross section, in addition to constrictions and expansions. These can challenge conventional size-based volume meshing strategies, and the ability to resolve nonlaminar flows. Here we present a novel strategy leveraging estimation of length scales that could be present if flow were to become transitional or turbulent. Starting from the lumen geometry and flow rate boundary conditions, centerlines are used to determine local hydraulic diameters and cross-sectional mean velocities, from which flow length scales are approximated using conventional definitions of local Kolmogorov and Taylor microscales. By inspection of these scales, a user specifies minimum and maximum mesh edge lengths, which are then distributed along the model in proportion to the approximated local Taylor length scales. We demonstrate in three representative cases that this strategy avoids some of the pitfalls of conventional size-based strategies. An exemplary CFD mesh-refinement study shows convergence of high-frequency flow instabilities even starting from relatively coarse edge lengths near the lower bounds of the approximated Taylor length scales. Rational consideration of the length scales in a possibly nonlaminar flow may thus provide a useful and replicable baseline for denovo meshing of complicated or unfamiliar venous lumen geometries.


Asunto(s)
Venas Cerebrales , Hidrodinámica , Estudios Transversales , Hemodinámica , Prótesis e Implantes , Simulación por Computador , Velocidad del Flujo Sanguíneo , Modelos Cardiovasculares
9.
J Neurointerv Surg ; 15(8): 760-765, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35728943

RESUMEN

BACKGROUND: Intracranial aneurysm neck width tends to be overestimated when measured with three-dimensional rotational angiography (3DRA) compared with two-dimensional digital subtraction angiography (2D-DSA), owing to high curvature at the neck. This may affect morphological and hemodynamic analysis in support of treatment planning. We present and validate a method for extracting high curvature features, such as aneurysm ostia, during segmentation of 3DRA images. METHODS: In our novel SURGE (segmentation with upsampled resolution and gradient enhancement) approach, the gradient of an upsampled image is sharpened before gradient-based watershed segmentation. Neck measurements were performed for both standard and SURGE segmentations of 3DRA for 60 consecutive patients and compared with those from 2D-DSA. Those segmentations were also qualitatively compared for surface topology and morphology. RESULTS: Compared with the standard watershed method, SURGE reduced neck measurement error relative to 2D-DSA by >60%: median error was 0.49 mm versus 0.17 mm for SURGE, which is less than the average pixel resolution (~0.33 mm) of the 3DRA dataset. SURGE reduced neck width overestimations >1 mm from 13/60 to 5/60 cases. Relative to 2D-DSA, standard segmentations were overestimated by 16% and 93% at median and 95th percentiles, respectively, compared with only 6% and 37%, respectively, for SURGE. CONCLUSION: SURGE provides operators with high-level control of the image gradient, allowing recovery of high-curvature features such as aneurysm ostia from 3DRA where conventional algorithms may fail. Compared with standard segmentation and tedious manual editing, SURGE provides a faster, easier, and more objective method for assessing aneurysm ostia and morphology.


Asunto(s)
Imagenología Tridimensional , Aneurisma Intracraneal , Humanos , Imagenología Tridimensional/métodos , Angiografía Cerebral/métodos , Aneurisma Intracraneal/diagnóstico por imagen , Angiografía de Substracción Digital/métodos , Hemodinámica
10.
Cardiovasc Eng Technol ; 14(2): 252-263, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36517696

RESUMEN

INTRODUCTION: Overestimation of intracranial aneurysm neck width by 3D angiography is a recognized clinical problem, and has long been a concern for image-based computational fluid dynamics (CFD). Recently, it was demonstrated that neck overestimation in 3D rotational angiography (3DRA) could be corrected via segmentation with upsampled resolution and gradient enhancement (SURGE). Our aim was to leverage this approach to determine whether and how neck overestimation actually impacts CFD-derived hemodynamics. MATERIALS AND METHODS: A subset of 17 cases having the largest neck errors from a consecutive clinical sample of 60 was segmented from 3DRA using both standard watershed and SURGE methods. High-fidelity, pulsatile CFD was performed, and a variety of scalar hemodynamic parameters that have been associated with aneurysm growth and/or rupture status were derived. RESULTS: With a few exceptions, flow and wall shear stress (WSS) patterns were qualitatively similar between neck-overestimated and corrected models. Sac-averaged WSS values were significantly lower after neck correction (p = 0.0005) but were highly correlated with their neck-overestimated counterparts (R2 = 0.98). Jet impingement was significantly more concentrated in the neck-corrected vs. -uncorrected models (p = 0.0011), and only moderately correlated (R2 = 0.61). Parameters quantifying velocity or WSS fluctuations were not significantly different after neck correction, but this reflected their poorer correlations (R2 < 0.4). Nevertheless, for all hemodynamic parameters, median absolute differences were < 26%, and no parameter had more than 5/17 cases with absolute differences > 50%. CONCLUSION: Differences in hemodynamics due to neck width overestimation were found to be at most equal to, and often less than, those reported for other sources of error/uncertainty in intracranial aneurysm CFD, such as solver settings or assumed inflow rates.


Asunto(s)
Aneurisma Intracraneal , Humanos , Aneurisma Intracraneal/diagnóstico por imagen , Imagenología Tridimensional , Hemodinámica , Estrés Mecánico , Hidrodinámica
11.
J Biomech Eng ; 145(4)2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36193889

RESUMEN

Previous experimental flow studies have demonstrated a delay (∼20%) in transition to turbulence for whole blood compared to a Newtonian analog fluid in both a straight pipe and eccentric stenosis model with ridged walls. The impact of wall compliance on the transition to turbulence of blood compared to Newtonian analog and on wall vibration is unknown. The present study employed flexible walls downstream of an eccentric stenosis model and examined the wall vibration during the transition to turbulence with whole blood and a Newtonian analog. Measurements of tube wall vibration velocity (WVV) were used as an indicator of the turbulence level within the flexible tube. WVV was measured at 5, 10, and 15 diameters downstream of the stenosis using a laser Doppler vibrometer at Reynolds numbers 0, 200, 300, 350, 400, 450, 500, 550, 600, 650, 700, and 750. The root mean squares (RMS) of the measured WVV were utilized as an indirect measure of fluid velocity fluctuations present at that location, and hence, an indicator of transition to turbulence. WVV RMS was near-constant until approximately Reynolds number 400. It increased monotonically with Reynolds number for both whole blood and the Newtonian fluid. No differences in the transition to turbulence were observed between whole blood and the Newtonian fluid, as the WVV RMS curves were remarkably similar in shape. This result suggests that rheology had minimal impact on the WVV downstream of a stenosis for transition to turbulence since the fluids had a similar level of vibration.


Asunto(s)
Modelos Cardiovasculares , Vibración , Humanos , Constricción Patológica , Estrés Mecánico , Reología , Velocidad del Flujo Sanguíneo
12.
Comput Methods Programs Biomed ; 226: 107174, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36223707

RESUMEN

BACKGROUND AND OBJECTIVE: Near-wall transport of low-density lipoproteins (LDL) in arteries plays a relevant role in the initiation of atherosclerosis. Although it can be modelled in silico by coupling the Navier-Stokes equations with the 3D advection-diffusion (AD) equation, the associated computational cost is high. As wall shear stress (WSS) represents a first-order approximation of the near-wall velocity in arteries, we aimed at identifying computationally convenient WSS-based quantities to infer LDL near-wall transport based on the underlying near-wall hemodynamics in five models of three human arterial districts (aorta, carotid bifurcations, coronary arteries). The simulated LDL transport and its WSS-based surrogates were qualitatively compared with in vivo longitudinal measurements of wall thickness growth on the coronary artery models. METHODS: Numerical simulations of blood flow coupled with AD equations for LDL transport and blood-wall transfer were performed. The co-localization of the simulated LDL concentration polarization patterns with luminal surface areas characterized by low cycle-average WSS, near-wall flow stagnation and WSS attracting patterns was quantitatively assessed by the similarity index (SI). In detail, the latter two represent features of the WSS topological skeleton, obtained respectively through the Lagrangian tracking of surface-born particles, and the Eulerian analysis of the divergence of the normalized cycle-average WSS vector field. RESULTS: Convergence of the solution of the AD problem required the simulation of 3 (coronary artery) to 10 (aorta) additional cardiac cycles with respect to the Navier-Stokes problem. Co-localization results underlined that WSS topological skeleton features indicating near-wall flow stagnation and WSS attracting patterns identified LDL concentration polarization profiles more effectively than low WSS, as indicated by higher SI values (SI range: 0.17-0.50 for low WSS; 0.24-0.57 for WSS topological skeleton features). Moreover, the correspondence between the simulated LDL uptake and WSS-based quantities profiles with the in vivo measured wall thickness growth in coronary arteries appears promising. CONCLUSIONS: The recently introduced Eulerian approach for identifying WSS attracting patterns from the divergence of normalized WSS provides a computationally affordable template of the LDL polarization at the arterial blood-wall interface without simulating the AD problem. It thus candidates as an effective biomechanical tool for elucidating the mechanistic link amongst LDL transfer at the arterial blood-wall interface, WSS and atherogenesis.


Asunto(s)
Aterosclerosis , Lipoproteínas LDL , Humanos , Modelos Cardiovasculares , Estrés Mecánico , Hemodinámica , Vasos Coronarios
13.
Int J Comput Assist Radiol Surg ; 17(6): 1143-1154, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35397711

RESUMEN

PURPOSE: Communicating complex blood flow patterns generated from computational fluid dynamics (CFD) simulations to clinical audiences for the purposes of risk assessment or treatment planning is an ongoing challenge. While attempts have been made to develop new software tools for such clinical visualization of CFD data, these often overlook established medical imaging/visualization practice and data infrastructures. Here, leveraging the clinical ubiquity of the DICOM file format, we present techniques for the translation of CFD data to DICOM series, facilitating interactive visualization in standard radiological software. METHODS: Unstructured CFD data (volumetric fields of velocity magnitude, Q-criterion, and pathlines) are resampled to structured grids. Novel raster-based techniques that simulate experimental optical blurring are presented for bringing simulated pathlines into structured image volumes. DICOM series are created by strategically encoding these data into the file's PixelArray tag. Lumen surface information is also strategically encoded into a different range of pixel intensities, allowing hemodynamics and morphology to be co-visualized in a single volume using opacity-based rendering transfer functions. RESULTS: We show that 3D temporal CFD data represented as structured DICOM series can be rendered interactively in Horos, a widely-used medical imaging/radiology software. Our transfer function-based approach allows for representations of scalar isosurfaces, volumetric rendering, and tubular pathlines to be modified in real-time, resembling conventional unstructured visualizations. Careful selection of voxelization ROIs helps to ensure that data are kept lightweight for real-time rendering and minimal storage. CONCLUSION: While our approach inherently sacrifices some of the advanced visualization capabilities of specialized software tools, we believe our closer consideration of standardization can help to facilitate meaningful clinical interaction. This work opens up possibilities for the complete integration of measured and simulated data in established radiological software environments and workflows from PACS storage to 3D/4D visualization.


Asunto(s)
Hidrodinámica , Programas Informáticos , Diagnóstico por Imagen , Hemodinámica/fisiología , Humanos , Flujo de Trabajo
14.
Comput Biol Med ; 144: 105333, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35279425

RESUMEN

After publishing an in-depth study that analyzed the ability of computerized methods to assist or replace human experts in obtaining carotid intima-media thickness (CIMT) measurements leading to correct therapeutic decisions, here the same consortium joined to present technical outlooks on computerized CIMT measurement systems and provide considerations for the community regarding the development and comparison of these methods, including considerations to encourage the standardization of computerized CIMT measurements and results presentation. A multi-center database of 500 images was collected, upon which three manual segmentations and seven computerized methods were employed to measure the CIMT, including traditional methods based on dynamic programming, deformable models, the first order absolute moment, anisotropic Gaussian derivative filters and deep learning-based image processing approaches based on U-Net convolutional neural networks. An inter- and intra-analyst variability analysis was conducted and segmentation results were analyzed by dividing the database based on carotid morphology, image signal-to-noise ratio, and research center. The computerized methods obtained CIMT absolute bias results that were comparable with studies in literature and they generally were similar and often better than the observed inter- and intra-analyst variability. Several computerized methods showed promising segmentation results, including one deep learning method (CIMT absolute bias = 106 ± 89 µm vs. 160 ± 140 µm intra-analyst variability) and three other traditional image processing methods (CIMT absolute bias = 139 ± 119 µm, 143 ± 118 µm and 139 ± 136 µm). The entire database used has been made publicly available for the community to facilitate future studies and to encourage an open comparison and technical analysis (https://doi.org/10.17632/m7ndn58sv6.1).


Asunto(s)
Arterias Carótidas , Grosor Intima-Media Carotídeo , Arterias Carótidas/diagnóstico por imagen , Arteria Carótida Común/diagnóstico por imagen , Humanos , Ultrasonografía/métodos , Ultrasonografía Doppler
15.
J Biomech Eng ; 144(6)2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35079768

RESUMEN

Recent studies using high-fidelity computational fluid dynamics (CFD) have revealed high-frequency flow instabilities consistent with clinical reports of bruits and "musical murmurs", which have been speculated to contribute to aneurysm growth and rupture. We hypothesized that harmonic flow instabilities ("spectral bandedness") in aneurysm CFD data may be associated with rupture status. Before testing this hypothesis, we first present a novel method for quantifying and visualizing spectral bandedness in cardiovascular CFD datasets based on musical audio-processing tools. Motivated by previous studies of aneurysm hemodynamics, we also computed a selection of existing metrics that have demonstrated association with rupture in large studies. In a dataset of 50 bifurcation aneurysm geometries modeled using high-fidelity CFD, our spectral bandedness index (SBI) was the only metric significantly associated with rupture status (AUC = 0.76, p = 0.002), with a specificity of 79% (correctly predicting 19/24 unruptured cases) and sensitivity of 65% (correctly predicting 17/26 ruptured cases). Three-dimensional flow visualizations revealed coherent regions of high SBI to be associated with strong near-wall inflow jets and vortex-shedding/flutter phenomena in the aneurysm sac. We speculate that these intracycle, coherent flow instabilities may preferentially contribute to the progressive degradation of the aneurysm wall through flow-induced vibrational mechanisms, and that their absence in high-fidelity CFD may be useful for identifying intracranial aneurysms at lower risk of rupture.


Asunto(s)
Aneurisma Roto , Aneurisma Intracraneal , Hemodinámica , Humanos , Hidrodinámica
16.
J Biomech Eng ; 144(3)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34505131

RESUMEN

Blood, a multiphase fluid comprised of plasma, blood cells, and platelets, is known to exhibit a shear-thinning behavior at low shear rates and near-Newtonian behavior at higher shear rates. However, less is known about the impact of its multiphase nature on the transition to turbulence. In this study, we experimentally determined the critical Reynolds number at which the flow began to transition to turbulence downstream of eccentric stenosis for whole porcine blood and a Newtonian blood analog (water-glycerin mixture). Velocity profiles for both fluids were measured under steady-state flow conditions using an ultrasound Doppler probe placed 12 diameters downstream of eccentric stenosis. Velocity was recorded at 21 locations along the diameter at 11 different flow rates. Normalized turbulent kinetic energy was used to determine the critical Reynolds number for each fluid. Blood rheology was measured before and after each experiment. Tests were conducted on five samples of each fluid inside a temperature-controlled in vitro flow system. The viscosity at a shear rate of 1000 s-1 was used to define the Reynolds number for each fluid. The mean critical Reynolds numbers for blood and water-glycerin were 470 ± 27.5 and 395 ± 10, respectively, indicating a ∼19% delay in transition to turbulence for whole blood compared to the Newtonian fluid. This finding is consistent with a previous report for steady flow in a straight pipe, suggesting some aspect of blood rheology may serve to suppress, or at least delay, the onset of turbulence in vivo.


Asunto(s)
Glicerol , Modelos Cardiovasculares , Animales , Velocidad del Flujo Sanguíneo , Constricción Patológica , Reología , Estrés Mecánico , Porcinos , Agua
17.
Ann Biomed Eng ; 49(9): 2606-2621, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34324092

RESUMEN

Although unphysiological wall shear stress (WSS) has become the consensus hemodynamic mechanism for coronary atherosclerosis, the complex biomechanical stimulus affecting atherosclerosis evolution is still undetermined. This has motivated the interest on the contraction/expansion action exerted by WSS on the endothelium, obtained through the WSS topological skeleton analysis. This study tests the ability of this WSS feature, alone or combined with WSS magnitude, to predict coronary wall thickness (WT) longitudinal changes. Nine coronary arteries of hypercholesterolemic minipigs underwent imaging with local WT measurement at three time points: baseline (T1), after 5.6 ± 0.9 (T2), and 7.6 ± 2.5 (T3) months. Individualized computational hemodynamic simulations were performed at T1 and T2. The variability of the WSS contraction/expansion action along the cardiac cycle was quantified using the WSS topological shear variation index (TSVI). Alone or combined, high TSVI and low WSS significantly co-localized with high WT at the same time points and were significant predictors of thickening at later time points. TSVI and WSS magnitude values in a physiological range appeared to play an atheroprotective role. Both the variability of the WSS contraction/expansion action and WSS magnitude, accounting for different hemodynamic effects on the endothelium, (1) are linked to WT changes and (2) concur to identify WSS features leading to coronary atherosclerosis.


Asunto(s)
Aterosclerosis/fisiopatología , Vasos Coronarios/fisiopatología , Modelos Cardiovasculares , Animales , Endotelio Vascular/fisiopatología , Hemodinámica , Estrés Mecánico , Porcinos , Porcinos Enanos
19.
Ultrasound Med Biol ; 47(8): 2442-2455, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33941415

RESUMEN

Common carotid intima-media thickness (CIMT) is a commonly used marker for atherosclerosis and is often computed in carotid ultrasound images. An analysis of different computerized techniques for CIMT measurement and their clinical impacts on the same patient data set is lacking. Here we compared and assessed five computerized CIMT algorithms against three expert analysts' manual measurements on a data set of 1088 patients from two centers. Inter- and intra-observer variability was assessed, and the computerized CIMT values were compared with those manually obtained. The CIMT measurements were used to assess the correlation with clinical parameters, cardiovascular event prediction through a generalized linear model and the Kaplan-Meier hazard ratio. CIMT measurements obtained with a skilled analyst's segmentation and the computerized segmentation were comparable in statistical analyses, suggesting they can be used interchangeably for CIMT quantification and clinical outcome investigation. To facilitate future studies, the entire data set used is made publicly available for the community at http://dx.doi.org/10.17632/fpv535fss7.1.


Asunto(s)
Algoritmos , Arterias Carótidas/diagnóstico por imagen , Grosor Intima-Media Carotídeo , Anciano , Sistemas de Computación , Femenino , Humanos , Masculino , Persona de Mediana Edad , Ultrasonografía
20.
J Neurointerv Surg ; 13(8): 732-737, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33219149

RESUMEN

BACKGROUND: Pulsatile tinnitus (PT) is a debilitating condition that can be caused by a vascular abnormality, such as an arterial or venous lesion. Although treatment of PT-related venous lesions has been shown to successfully cure patients of the associated 'tormenting' rhythmical sound, much controversy still exists regarding their role in the etiology of PT. METHODS: A patient presented with a history of worsening, unilateral PT. A partial venous sinus obstruction related to the large arachnoid granulation was detected on the right side, and subsequently stented at the right transverse sinus. High-fidelity computational fluid dynamics (CFD) was performed on a 3D model digitally segmented from the pre-stent venogram, with assumed pulsatile flow rates. A post-stent CFD model was also constructed from this. Data-driven sonification was performed on the CFD velocity data, blinded to the patient's self-reported sounds. RESULTS: The patient reported that the PT was completely resolved after stenting, and has had no recurrence of the symptoms after more than 2 years. CFD simulation revealed highly disturbed, turbulent-like flow at the sigmoid sinus close to auditory structures, producing a sonified audio signal that reproduced the subjective sonance of the patient's PT. No turbulence or sounds were evident at the stenosis, or anywhere in the post-stent model. CONCLUSIONS: For the first time, turbulence generated distal to a venous stenosis is shown to be a cause of PT. High-fidelity CFD may be useful for identifying patients with such 'torrents' of flow, to help guide treatment decision-making.


Asunto(s)
Simulación por Computador , Hemodinámica , Imagenología Tridimensional , Stents , Acúfeno , Senos Transversos , Procedimientos Quirúrgicos Vasculares , Trastornos Cerebrovasculares/diagnóstico , Trastornos Cerebrovasculares/etiología , Trastornos Cerebrovasculares/cirugía , Constricción Patológica/complicaciones , Constricción Patológica/fisiopatología , Constricción Patológica/cirugía , Humanos , Angiografía por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Flebografía/métodos , Acúfeno/etiología , Acúfeno/fisiopatología , Acúfeno/cirugía , Senos Transversos/patología , Senos Transversos/cirugía , Resultado del Tratamiento , Procedimientos Quirúrgicos Vasculares/instrumentación , Procedimientos Quirúrgicos Vasculares/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...