Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 335: 117521, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36870193

RESUMEN

Despite the widespread use of agricultural best management practices (BMPs) to reduce watershed scale nutrient loads, there remain few studies that use directly observed data - instead of models - to evaluate BMP effectiveness at the watershed scale. In this study, we make use of extensive ambient water quality data, stream biotic health data, and BMP implementation data within the New York State portion of the Chesapeake Bay watershed to assess the role of BMPs on reducing nutrient loads and modifying biotic health in major rivers. The specific BMPs considered were riparian buffers and nutrient management planning. A simple mass balance approach was used to evaluate the role of wastewater treatment plant nutrient reductions, agricultural land use changes, and these two agricultural BMPs in matching observed downward trends in nutrient load. In the Eastern nontidal network (NTN) catchment - where BMPs have been more widely reported - the mass balance model suggested a small but discernible contribution of BMPs in matching the observed downward trend in total phosphorus. Contrastingly, BMP implementations did not show clear contributions towards total nitrogen reductions in the Eastern NTN catchment nor for the total nitrogen and phosphorus in the Western NTN catchment, where BMP implementation data are more limited. Assessment of the relationship between stream biotic health and BMP implementation using regression models found limited connection between extent of BMP implementation and biotic health. In this case, however, spatiotemporal mismatches between the datasets and the relatively stable biotic health, typically of moderate to good quality even before BMP implementation, may reflect the need for better monitoring design to assess BMP effects at the subwatershed scale. Additional studies, perhaps using citizen scientists, may be able to provide more suitable data within the existing frameworks of the long-term surveys. Given the preponderance of studies that rely only on modeling to understand nutrient loading reductions achieved by implementation of BMPs, it is essential to continue to collect empirical data to meaningfully evaluate whether there are actual measurable changes due to BMPs.


Asunto(s)
Ríos , Calidad del Agua , New York , Agricultura , Nitrógeno/análisis , Fósforo/análisis , Monitoreo del Ambiente
2.
Glob Chang Biol ; 28(22): 6771-6788, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36045489

RESUMEN

Dryland riparian woodlands are considered to be locally buffered from droughts by shallow and stable groundwater levels. However, climate change is causing more frequent and severe drought events, accompanied by warmer temperatures, collectively threatening the persistence of these groundwater dependent ecosystems through a combination of increasing evaporative demand and decreasing groundwater supply. We conducted a dendro-isotopic analysis of radial growth and seasonal (semi-annual) carbon isotope discrimination (Δ13 C) to investigate the response of riparian cottonwood stands to the unprecedented California-wide drought from 2012 to 2019, along the largest remaining free-flowing river in Southern California. Our goals were to identify principal drivers and indicators of drought stress for dryland riparian woodlands, determine their thresholds of tolerance to hydroclimatic stressors, and ultimately assess their vulnerability to climate change. Riparian trees were highly responsive to drought conditions along the river, exhibiting suppressed growth and strong stomatal closure (inferred from reduced Δ13 C) during peak drought years. However, patterns of radial growth and Δ13 C were quite variable among sites that differed in climatic conditions and rate of groundwater decline. We show that the rate of groundwater decline, as opposed to climate factors, was the primary driver of site differences in drought stress, and trees showed greater sensitivity to temperature at sites subjected to faster groundwater decline. Across sites, higher correlation between radial growth and Δ13 C for individual trees, and higher inter-correlation of Δ13 C among trees were indicative of greater drought stress. Trees showed a threshold of tolerance to groundwater decline at 0.5 m year-1 beyond which drought stress became increasingly evident and severe. For sites that exceeded this threshold, peak physiological stress occurred when total groundwater recession exceeded ~3 m. These findings indicate that drought-induced groundwater decline associated with more extreme droughts is a primary threat to dryland riparian woodlands and increases their susceptibility to projected warmer temperatures.


Asunto(s)
Sequías , Agua Subterránea , Isótopos de Carbono/análisis , Ecosistema , Bosques , Árboles/fisiología
3.
HardwareX ; 12: e00351, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36117543

RESUMEN

Accurate estimation of transpiration in individual trees is important for understanding plant responses to environmental drivers, closing the water balance in forest stands and catchments, and calibrating earth system models, among other applications. However, the cost and power consumption of commercial systems based on sap flow methods still limit their usage. We developed and tested a cost-effective (<$150), simple to construct, and energy efficient sap flux device based on the heat pulse method. Energy savings were achieved by reducing the voltage of heat pulses and using an internal clock to completely shut down the device between pulses. Device accuracy was confirmed by laboratory estimates of sap flow made on excised branches of Acer saccharum and Tsuga canadensis (adjusted R2 = 0.96). In a 174-d field installation of 12 devices, batteries (eight rechargeable Ni-MH AA) needed to be replaced every 14 days. Sap flux measurements in the field tracked expected variations in vapor pressure deficit and tree phenology. The low cost, compact design, reliability, and power consumption of this device enable sap flux studies to operate with more replication and in more diverse ecological settings than has been practical in the past.

4.
Oecologia ; 196(4): 1233-1245, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34331105

RESUMEN

Species range limits often reflect niche limits, especially for ranges constrained along elevational gradients. In this study, we used elevational transplant experiments to test niche breadth and functional trait plasticity in early life stages of narrow-range Nabalus boottii and broad-range N. trifoliolatus plants to assess their climate change vulnerability and the applicability of the niche breadth-range size hypothesis to explain their range size differences. We discovered that the earliest life stage (seed germination) was the most vulnerable and the two alpine taxa, N. boottii and N. trifoliolatus var. nanus, were unable to establish at the warm low elevation site, however non-alpine N. trifoliolatus established at all three elevations, including at the high elevation (beyond-range) site. Niche limits in seed emergence may therefore contribute to range size in these taxa. In contrast, when seedlings were planted we found substantial functional trait plasticity in later life stages (average 44% across ten traits) that was highly similar for all Nabalus taxa, suggesting that differences in plasticity do not generate niche differences or restrict range size in the focal taxa. While this substantial plasticity may help buffer populations faced by climate change, the inability of the alpine taxa to establish at lower elevation sites suggests that their populations may still decline due to decreased seed recruitment under ongoing climate change. We therefore recommend monitoring alpine Nabalus populations, particularly globally rare N. boottii.


Asunto(s)
Asteraceae , Cambio Climático , Plantones , Semillas
5.
J Environ Manage ; 294: 113021, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34139648

RESUMEN

Denitrification is a significant regulator of nitrogen pollution in diverse landscapes but is difficult to quantify. We examined relationships between denitrification potential and soil and landscape properties to develop a model that predicts denitrification potential at a landscape level. Denitrification potential, ancillary soil variables, and physical landscape attributes were measured at study sites within urban, suburban, and forested environments in the Gwynns Falls watershed in Baltimore, Maryland in a series of studies between 1998 and 2014. Data from these studies were used to develop a statistical model for denitrification potential using a subset of the samples (N = 188). The remaining measurements (N = 150) were used to validate the model. Soil moisture, soil respiration, and total soil nitrogen were the best predictors of denitrification potential (R2adj = 0.35), and the model was validated by regressing observed vs. predicted values. Our results suggest that soil denitrification potential can be modeled successfully using these three parameters, and that this model performs well across a variety of natural and developed land uses. This model provides a framework for predicting nitrogen dynamics in varying land use contexts. We also outline approaches to develop appropriate landscape-scale proxies for the key model inputs, including soil moisture, respiration, and soil nitrogen.


Asunto(s)
Desnitrificación , Suelo , Contaminación Ambiental , Nitrógeno/análisis
6.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34161277

RESUMEN

Riparian ecosystems fundamentally depend on groundwater, especially in dryland regions, yet their water requirements and sources are rarely considered in water resource management decisions. Until recently, technological limitations and data gaps have hindered assessment of groundwater influences on riparian ecosystem health at the spatial and temporal scales relevant to policy and management. Here, we analyze Sentinel-2-derived normalized difference vegetation index (NDVI; n = 5,335,472 observations), field-based groundwater elevation (n = 32,051 observations), and streamflow alteration data for riparian woodland communities (n = 22,153 polygons) over a 5-y period (2015 to 2020) across California. We find that riparian woodlands exhibit a stress response to deeper groundwater, as evidenced by concurrent declines in greenness represented by NDVI. Furthermore, we find greater seasonal coupling of canopy greenness to groundwater for vegetation along streams with natural flow regimes in comparison with anthropogenically altered streams, particularly in the most water-limited regions. These patterns suggest that many riparian woodlands in California are subsidized by water management practices. Riparian woodland communities rely on naturally variable groundwater and streamflow components to sustain key ecological processes, such as recruitment and succession. Altered flow regimes, which stabilize streamflow throughout the year and artificially enhance water supplies to riparian vegetation in the dry season, disrupt the seasonal cycles of abiotic drivers to which these Mediterranean forests are adapted. Consequently, our analysis suggests that many riparian ecosystems have become reliant on anthropogenically altered flow regimes, making them more vulnerable and less resilient to rapid hydrologic change, potentially leading to future riparian forest loss across increasingly stressed dryland regions.


Asunto(s)
Bosques , Agua Subterránea , Actividades Humanas , Ríos , California , Geografía , Humanos , Hidrología , Modelos Lineales , Plantas , Tecnología de Sensores Remotos , Reología , Propiedades de Superficie , Agua
7.
J Environ Manage ; 279: 111630, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33213995

RESUMEN

Many terrestrial ecosystems have undergone profound transformation under the pressure of multiple human stressors. This may have oriented altered ecosystems toward transient or new states. Understanding how these cumulative impacts influence ecosystem functions, services and ecological trajectories is therefore essential to defining effective restoration strategies. This is particularly the case in riverine ecosystems, where the profound alteration of natural disturbance regimes can make the effectiveness of restoration operations questionable. Using the case study of legacy dike fields, i.e., area delimited by longitudinal and lateral dikes, along the regulated Rhône River, we studied the impacts of long-term channelization and flow regulation on environmental conditions and riparian forests attributes along a 200 km climatic gradient. We characterized the imprint of human stressors on these forests by comparing the dike field stands to more natural stands in both young and mature vegetation stages. Across four reaches of the river between Lyon and the Mediterranean Sea, we found that channelization consistently promoted high rate of overbank sedimentation and rapid disconnection of dike field surfaces from the channel. The rapid terrestrialisation of dike field surfaces, i.e., the process by which former aquatic areas transition to a terrestrial ecosystem as a result of dewatering or sedimentation, fostered a pulse of riparian forest regeneration in these resource-rich environments that differs from more natural sites in structure and composition. Within the dike fields, older pre-dam stands are dominated by post-pioneer and exotic species, and post-dam stands support large, aging pioneer trees with a largely exotic understory regeneration layer. These patterns were associated with differences in the relative surface elevation among dike fields, whereas species shifts generally followed the river's longitudinal climate gradient. To enhance the functionality of these human-made ecosystems, restoration strategies should target the reconnection of dike fields to the river by dismantling part of the dikes to promote lateral erosion, forest initiation and community succession, as well as increasing minimum flows in channels to improve connection with groundwater. However, since a river-wide return to a pre-disturbance state is very unlikely, a pragmatic approach should be favoured, focusing on local actions that can improve abiotic and biotic function, and ultimately enhancing ecosystem services such biodiversity, habitat, and recreation opportunities.


Asunto(s)
Ecosistema , Ríos , Bosques , Humanos , Mar Mediterráneo , Árboles
8.
J Environ Manage ; 271: 111037, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32778317

RESUMEN

Riparian ecosystems are shaped by interactions among streamflow, plants, and physical processes. Sustaining functioning riparian ecosystems in the face of climate change, growing human demands for water, and increasing water scarcity requires improved understanding of the sensitivity of riparian ecosystems to shifts in flow regimes and associated adaptive management strategies. We applied projected future flow regimes to an ecogeomorphic model of riparian and channel response to evaluate these interactions. We tested the hypothesis that components of the riparian ecosystem vary in their vulnerabilities to shifts in flow attributes and that changes in the representation of functional groups of plants result from interactions between ecological and physical drivers. Using the Yampa and Green Rivers in northwestern Colorado as our test system, we investigated ecogeomorphic response to (1) synthetic flow regimes representing continuous changes from baseline flows; and (2) future flow scenarios that incorporate changing climate, demand, and water-resource projects. For this region, we showed that riparian plant presence, composition, and cover are highly sensitive to the high flows that occur early in the growing season, but that shifts to low flows are also important, especially for determining the functional diversity of a riparian community. Future flow regimes are likely to induce vegetation encroachment on lower channel surfaces and to increase plant cover, which will be dominated by fewer functional groups. In particular, we predict a decrease in some mesic plants (shrubs and tall herbs) and an increase in presence and cover of late-seral, xeric shrubs, most of which are non-native species. Managing for high flows that occur early in the growing season must complement maintenance of adequate baseflows to maintain ecosystem functioning in the face of hydrologic alterations induced by climate change and human water demand.


Asunto(s)
Ecosistema , Ríos , Cambio Climático , Colorado , Hidrología
9.
Sci Total Environ ; 721: 137730, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32172113

RESUMEN

Prolonged exposure to human induced-stressors can profoundly modify the natural trajectory of ecosystems. Predicting how ecosystems respond under stress requires understanding how physical and biological properties of degraded systems parallel or deviate over time from those of near-natural systems. Utilizing comprehensive forest inventory datasets, we used a paired chronosequence modelling approach to test the effects of long-term channelization and flow regulation of a large river on changes in abiotic conditions and related riparian forest attributes across a range of successional phases. By comparing ecological trajectories between the highly degraded Rhône and the relatively unmodified Drôme rivers, we demonstrated a rapid, strong and likely irreversible divergence in forest succession between the two rivers. The vast majority of metrics measuring life history traits, stand structure, and community composition varied with stand age but diverged significantly between rivers, concurrent with large differences in hydrologic and geomorphic trajectories. Channelization and flow regulation induced a more rapid terrestrialization of the river channel margins along the Rhône River and accelerated change in stand attributes, from pioneer-dominated stands to a mature successional phase dominated by non-native species. Relative to the Drôme, dispersion of trait values was higher in young forest stands along the Rhône, indicating a rapid assembly of functionally different species and an accelerated transition to post-pioneer communities. This study demonstrated that human modifications to the hydro-geomorphic regime have induced acute and sustained changes in environmental conditions, therefore altering the structure and composition of riparian forests. The speed, strength and persistence of the changes suggest that the Rhône River floodplain forests have strongly diverged from natural systems under persistent multiple stressors during the past two centuries. These results reinforce the importance of considering historical changes in environmental conditions to determine ecological trajectories in riparian ecosystems, as has been shown for old fields and other successional contexts.


Asunto(s)
Ecosistema , Ríos , Bosques , Humanos , Hidrología , Árboles
10.
Environ Sci Technol ; 50(10): 4979-88, 2016 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-27077530

RESUMEN

Detrimental effects of road salt runoff on urban streams are compounded by its facilitated routing via storm drains, ditches, and flood channels. Elevated in-stream salinity may also result from seasonal storage and discharge of chloride in groundwater, and previous work has hypothesized that groundwater discharge to streams may have the effect of diluting stream chloride concentrations in winter and enriching them in summer. However, the hydrogeological processes controlling these patterns have not been thoroughly investigated. Our research focuses on an urban stream and floodplain system in Syracuse, NY, to understand how groundwater and surface water exchange impacts chloride storage, fate, and transport. We created a 3D groundwater flow and solute transport model of the floodplain, calibrated to the distributions of floodplain hydraulic heads and groundwater fluxes to the stream throughout the reach. We used a sensitivity analysis to calibrate and evaluate the influence of model parameters, and compared model outputs to field observations. The main source mechanism of chloride to the floodplain aquifer was high-concentration, overbank flood events in winter that directly recharged groundwater. The modeled residence time and storage capacity of the aquifer indicate that restoration projects designed to promote floodplain reconnection and the frequency of overbank flooding in winter have the potential to temporarily store chloride in groundwater, buffer surface water concentrations, and reduce stream concentrations following periods of road salting.


Asunto(s)
Monitoreo del Ambiente , Agua Subterránea , Inundaciones , Ríos , Cloruro de Sodio , Movimientos del Agua
11.
Nat Plants ; 2: 16109, 2016 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-28221374

RESUMEN

Climate change, particularly increased aridity, poses a significant threat to plants and the biotic communities they support. Dioecious species may be especially vulnerable to climate change given that they often exhibit spatial segregation of the sexes, reinforced by physiological and morphological specialization of each sex to different microhabitats. In dimorphic species, the overexpression of a trait by one gender versus the other may become suppressed in future climates. Data suggest that males will generally be less sensitive to increased aridity than co-occurring females and, consequently, extreme male-biased sex ratios are possible in a significant number of populations. The effects of male-biased sex ratios are likely to cascade to dependent community members, especially those that are specialized on one sex.


Asunto(s)
Cambio Climático , Fenómenos Fisiológicos de las Plantas , Ecosistema , Reproducción , Especificidad de la Especie
12.
Ecol Appl ; 21(4): 1225-40, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21774426

RESUMEN

Mechanism-based ecological models are a valuable tool for understanding the drivers of complex ecological systems and for making informed resource-management decisions. However, inaccurate conclusions can be drawn from models with a large degree of uncertainty around multiple parameter estimates if uncertainty is ignored. This is especially true in nonlinear systems with multiple interacting variables. We addressed these issues for a mechanism-based, demographic model of Populus fremontii (Fremont cottonwood), the dominant riparian tree species along southwestern U.S. rivers. Many cottonwood populations have declined following widespread floodplain conversion and flow regulation. As a result, accurate predictive models are needed to analyze effects of future climate change and water management decisions. To quantify effects of parameter uncertainty, we developed an analytical approach that combines global sensitivity analysis (GSA) with classification and regression trees (CART) and Random Forest, a bootstrapping CART method. We used GSA to quantify the interacting effects of the full range of uncertainty around all parameter estimates, Random Forest to rank parameters according to their total effect on model predictions, and CART to identify higher-order interactions. GSA simulations yielded a wide range of predictions, including annual germination frequency of 10-100%, annual first-year survival frequency of 0-50%, and patch occupancy of 0-100%. This variance was explained primarily by complex interactions among abiotic parameters including capillary fringe height, stage-discharge relationship, and floodplain accretion rate, which interacted with biotic factors to affect survival. Model precision was primarily influenced by well-studied parameter estimates with minimal associated uncertainty and was virtually unaffected by parameter estimates for which there are no available empirical data and thus a large degree of uncertainty. Therefore, research to improve model predictions should not always focus on the least-studied parameters, but rather those to which model predictions are most sensitive. We advocate the combined use of global sensitivity analysis, CART, and Random Forest to: (1) prioritize research efforts by ranking variable importance; (2) efficiently improve models by focusing on the most important parameters; and (3) illuminate complex model properties including nonlinear interactions. We present an analytical framework that can be applied to any model with multiple uncertain parameter estimates.


Asunto(s)
Ecosistema , Modelos Biológicos , Populus/fisiología , Ríos , California , Modelos Estadísticos , Dinámica Poblacional
13.
Oecologia ; 164(3): 579-90, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20480183

RESUMEN

In semi-arid regions, a major population limitation for riparian trees is seedling desiccation during the dry season that follows annual spring floods. We investigated the stress response of first-year pioneer riparian seedlings to experimental water table declines (0, 1 and 3 cm day(-1)), focusing on the three dominant cottonwood and willows (family Salicaceae) in California's San Joaquin Basin. We analyzed growth and belowground allocation response to water stress, and used logistic regression to determine if these traits had an influence on individual survival. The models indicate that high root growth (>3 mm day(-1)) and low shoot:root ratios (<1.5 g g(-1)) strongly predicted survival, but there was no evidence that plants increased belowground allocation in response to drawdown. Leaf δ(13)C values shifted most for the best-surviving species (net change of +3.5 per mil from -30.0 ± 0.3 control values for Goodding's willow, Salix gooddingii), implying an important role of increased water-use efficiency for surviving water stress. Both S. gooddingii and sandbar willow (S. exigua) reduced leaf size from controls, whereas Fremont cottonwood (Populus fremontii) sustained a 29% reduction in specific leaf area (from 13.4 to 9.6 m(2) kg(-1)). The functional responses exhibited by Goodding's willow, the more drought-tolerant species, may play a role in its greater relative abundance in dry regions such as the San Joaquin Basin. This study highlights the potential for a shift in riparian forest composition. Under a future drier climate regime or under reduced regulated river flows, our results suggest that willow establishment will be favored over cottonwood.


Asunto(s)
Populus/fisiología , Salix/fisiología , Plantones/fisiología , Estrés Fisiológico , Agua/metabolismo , Biomasa , California , Clima , Desecación , Ecosistema , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Brotes de la Planta/fisiología , Populus/crecimiento & desarrollo , Populus/metabolismo , Análisis de Regresión , Ríos , Salix/crecimiento & desarrollo , Salix/metabolismo , Estaciones del Año , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Especificidad de la Especie , Movimientos del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...