Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Kidney Int Rep ; 9(5): 1458-1472, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38707825

RESUMEN

Introduction: Sugarcane workers are exposed to potentially hazardous agrochemicals, including pesticides, heavy metals, and silica. Such occupational exposures present health risks and have been implicated in a high rate of kidney disease seen in these workers. Methods: To investigate potential biomarkers and mechanisms that could explain chronic kidney disease (CKD) among this worker population, paired urine samples were collected from sugarcane cutters at the beginning and end of a harvest season in Guatemala. Workers were then separated into 2 groups, namely those with or without kidney function decline (KFD) across the harvest season. Urine samples from these 2 groups underwent elemental analysis and untargeted metabolomics. Results: Urine profiles demonstrated increases in silicon, certain pesticides, and phosphorus levels in all workers, whereas heavy metals remained low. The KFD group had a reduction in estimated glomerular filtration rate (eGFR) across the harvest season; however, kidney injury marker 1 did not significantly change. Cross-harvest metabolomic analysis found trends of fatty acid accumulation, perturbed amino acid metabolism, presence of pesticides, and other known signs of impaired kidney function. Conclusion: Silica and certain pesticides were significantly elevated in the urine of sugarcane workers with or without KFD. Future work should determine whether long-term occupational exposure to silica and pesticides across multiple seasons contributes to CKD in these workers. Overall, these results confirmed that multiple exposures are occurring in sugarcane workers and may provide insight into early warning signs of kidney injury and may help explain the increased incidence of CKD among agricultural workers.

2.
Inhal Toxicol ; 36(5): 327-342, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38349733

RESUMEN

Sugarcane is the most widely cultivated crop in the world, with equatorial developing nations performing most of this agriculture. Burning sugarcane is a common practice to facilitate harvest, producing extremely high volumes of respirable particulate matter in the process. These emissions are known to have deleterious effects on agricultural workers and nearby communities, but the extent of this exposure and potential toxicity remain poorly characterized. As the epidemicof chronic kidney disease of an unknown etiology (CKDu) and its associated mortality continue to increase along with respiratory distress, there is an urgent need to investigate the causes, determine viable interventions to mitigate disease andimprove outcomes for groups experiencing disproportionate impact. The goal of this review is to establish the state of available literature, summarize what is known in terms of human health risk, and provide recommendations for what areas should be prioritized in research.


Asunto(s)
Agricultores , Exposición Profesional , Saccharum , Humanos , Exposición Profesional/efectos adversos , Agricultura , Material Particulado/toxicidad , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/toxicidad
3.
Environ Pollut ; 332: 121951, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37301454

RESUMEN

Multiple epidemics of chronic kidney disease of an unknown etiology (CKDu) have emerged in agricultural communities around the world. Many factors have been posited as potential contributors, but a primary cause has yet to be identified and the disease is considered likely multifactorial. Sugarcane workers are largely impacted by disease leading to the hypothesis that exposure to sugarcane ash produced during the burning and harvest of sugarcane could contribute to CKDu. Estimated exposure levels of particles under 10 µm (PM10) have been found to be exceptionally high during this process, exceeding 100 µg/m3 during sugarcane cutting and averaging ∼1800 µg/m3 during pre-harvest burns. Sugarcane stalks consist of ∼80% amorphous silica and generate nano-sized silica particles (∼200 nm) following burning. A human proximal convoluted tubule (PCT) cell line was subjected to treatments ranging in concentration from 0.025 µg/mL to 25 µg/mL of sugarcane ash, desilicated sugarcane ash, sugarcane ash-derived silica nanoparticles (SAD SiNPs) or manufactured pristine 200 nm silica nanoparticles. The combination of heat stress and sugarcane ash exposure on PCT cell responses was also assessed. Following 6-48 h of exposure, mitochondrial activity and viability were found to be significantly reduced when exposed to SAD SiNPs at concentrations 2.5 µg/mL or higher. Oxygen consumption rate (OCR) and pH changes suggested significant alteration to cellular metabolism across treatments as early as 6 h following exposure. SAD SiNPs were found to inhibit mitochondrial function, reduce ATP generation, increase reliance on glycolysis, and reduce glycolytic reserve. Metabolomic analysis revealed several cellular energetics pathways (e.g., fatty acid metabolism, glycolysis, and TCA cycle) are significantly altered across ash-based treatments. Heat stress did not influence these responses. Such changes indicate that exposure to sugarcane ash and its derivatives can promote mitochondrial dysfunction and disrupt metabolic activity of human PCT cells.


Asunto(s)
Nanopartículas , Saccharum , Humanos , Dióxido de Silicio/toxicidad , Dióxido de Silicio/análisis , Riñón/química , Nanopartículas/toxicidad , Línea Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA