Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Cell Death Discov ; 10(1): 124, 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38461159

RESUMEN

Pancreatic cancer is a malignant tumor of the digestive system. It is highly aggressive, easily metastasizes, and extremely difficult to treat. This study aimed to analyze the genes that might regulate pancreatic cancer migration to provide an essential basis for the prognostic assessment of pancreatic cancer and individualized treatment. A CRISPR knockout library directed against 915 murine genes was transfected into TB 32047 cell line to screen which gene loss promoted cell migration. Next-generation sequencing and PinAPL.py- analysis was performed to identify candidate genes. We then assessed the effect of serine/threonine kinase 11 (STK11) knockout on pancreatic cancer by wound-healing assay, chick agnosia (CAM) assay, and orthotopic mouse pancreatic cancer model. We performed RNA sequence and Western blotting for mechanistic studies to identify and verify the pathways. After accelerated Transwell migration screening, STK11 was identified as one of the top candidate genes. Further experiments showed that targeted knockout of STK11 promoted the cell migration and increased liver metastasis in mice. Mechanistic analyses revealed that STK11 knockout influences blood vessel morphogenesis and is closely associated with the enhanced expression of phosphodiesterases (PDEs), especially PDE4D, PDE4B, and PDE10A. PDE4 inhibitor Roflumilast inhibited STK11-KO cell migration and tumor size, further demonstrating that PDEs are essential for STK11-deficient cell migration. Our findings support the adoption of therapeutic strategies, including Roflumilast, for patients with STK11-mutated pancreatic cancer in order to improve treatment efficacy and ultimately prolong survival.

2.
Exp Hematol ; : 104177, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38336135

RESUMEN

Emerging evidence implicates the epithelial-mesenchymal transition transcription factor Zeb1 as a critical regulator of hematopoietic stem cell (HSC) differentiation. Whether Zeb1 regulates long-term maintenance of HSC function remains an open question. Using an inducible Mx-1-Cre mouse model that deletes conditional Zeb1 alleles in the adult hematopoietic system, we found that mice engineered to be deficient in Zeb1 for 32 weeks displayed expanded immunophenotypically defined adult HSCs and multipotent progenitors associated with increased abundance of lineage-biased/balanced HSC subsets and augmented cell survival characteristics. During hematopoietic differentiation, persistent Zeb1 loss increased B cells in the bone marrow and spleen and decreased monocyte generation in the peripheral blood. In competitive transplantation experiments, we found that HSCs from adult mice with long-term Zeb1 deletion displayed a cell autonomous defect in multilineage differentiation capacity. Long-term Zeb1 loss perturbed extramedullary hematopoiesis characterized by increased splenic weight and a paradoxical reduction in splenic cellularity that was accompanied by HSC exhaustion, lineage-specific defects, and an accumulation of aberrant, preleukemic like c-kit+CD16/32+ progenitors. Loss of Zeb1 for up to 42 weeks can lead to progressive splenomegaly and an accumulation of Gr-1+Mac-1+ cells, further supporting the notion that long-term expression of Zeb1 suppresses preleukemic activity. Thus, sustained Zeb1 deletion disrupts HSC functionality in vivo and impairs regulation of extramedullary hematopoiesis with potential implications for tumor suppressor functions of Zeb1 in myeloid neoplasms.

3.
Cells Tissues Organs ; 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38194935

RESUMEN

TEMTIA X, the tenth symposium organized by the EMT international Association (TEMTIA) took place in Paris on November 7th-10th, 2022. Similarly to the previous meetings, it reviewed most recent aspects of the epithelial-mesenchymal transition, a cellular process involved during distinct stages of development, but also during wound healing and fibrosis to some level. EMT steps are likewise typically described with various extents during tumor cell progression and metastasis. The meeting emphasized the intermediate stages involved in the process and their potential physiological or pathological importance, taking advantage of the expansion of molecular methods at single cell level. It also introduced new descriptions of EMT occurrences during early embryogenesis. In addition, sessions explored how EMT reflects cell metabolism and how the process can mingle with immune response, particularly during tumor progression, providing new targets, that were discussed, among others, for cancer therapy. Finally, it introduced a new perception of EMT biological meaning based on an evolutionary perspective. The meeting integrated the TEMTIA general assembly , allowing general discussion about the future of the association, starting with the site of the next meeting, now decided to take place in Seattle (US), late 2024.

4.
EMBO J ; 42(7): e111148, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36843552

RESUMEN

Osteoclasts are bone-resorbing polykaryons responsible for skeletal remodeling during health and disease. Coincident with their differentiation from myeloid precursors, osteoclasts undergo extensive transcriptional and metabolic reprogramming in order to acquire the cellular machinery necessary to demineralize bone and digest its interwoven extracellular matrix. While attempting to identify new regulatory molecules critical to bone resorption, we discovered that murine and human osteoclast differentiation is accompanied by the expression of Zeb1, a zinc-finger transcriptional repressor whose role in normal development is most frequently linked to the control of epithelial-mesenchymal programs. However, following targeting, we find that Zeb1 serves as an unexpected regulator of osteoclast energy metabolism. In vivo, Zeb1-null osteoclasts assume a hyperactivated state, markedly decreasing bone density due to excessive resorptive activity. Mechanistically, Zeb1 acts in a rheostat-like fashion to modulate murine and human osteoclast activity by transcriptionally repressing an ATP-buffering enzyme, mitochondrial creatine kinase 1 (MtCK1), thereby controlling the phosphocreatine energy shuttle and mitochondrial respiration. Together, these studies identify a novel Zeb1/MtCK1 axis that exerts metabolic control over bone resorption in vitro and in vivo.


Asunto(s)
Resorción Ósea , Osteoclastos , Ratones , Animales , Humanos , Osteoclastos/metabolismo , Forma Mitocondrial de la Creatina-Quinasa/metabolismo , Resorción Ósea/genética , Resorción Ósea/metabolismo , Huesos , Diferenciación Celular , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo
5.
Cell Rep ; 41(11): 111819, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36516781

RESUMEN

The DNA damage response (DDR) and epithelial-to-mesenchymal transition (EMT) are two crucial cellular programs in cancer biology. While the DDR orchestrates cell-cycle progression, DNA repair, and cell death, EMT promotes invasiveness, cellular plasticity, and intratumor heterogeneity. Therapeutic targeting of EMT transcription factors, such as ZEB1, remains challenging, but tumor-promoting DDR alterations elicit specific vulnerabilities. Using multi-omics, inhibitors, and high-content microscopy, we discover a chemoresistant ZEB1-high-expressing sub-population (ZEB1hi) with co-rewired cell-cycle progression and proficient DDR across tumor entities. ZEB1 stimulates accelerated S-phase entry via CDK6, inflicting endogenous DNA replication stress. However, DDR buildups involving constitutive MRE11-dependent fork resection allow homeostatic cycling and enrichment of ZEB1hi cells during transforming growth factor ß (TGF-ß)-induced EMT and chemotherapy. Thus, ZEB1 promotes G1/S transition to launch a progressive DDR benefitting stress tolerance, which concurrently manifests a targetable vulnerability in chemoresistant ZEB1hi cells. Our study thus highlights the translationally relevant intercept of the DDR and EMT.


Asunto(s)
Factores de Transcripción , Homeobox 1 de Unión a la E-Box con Dedos de Zinc , Factores de Transcripción/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/genética , Replicación del ADN
7.
Nat Commun ; 13(1): 610, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35105859

RESUMEN

Lima1 is an extensively studied prognostic marker of malignancy and is also considered to be a tumour suppressor, but its role in a developmental context of non-transformed cells is poorly understood. Here, we characterise the expression pattern and examined the function of Lima1 in mouse embryos and pluripotent stem cell lines. We identify that Lima1 expression is controlled by the naïve pluripotency circuit and is required for the suppression of membrane blebbing, as well as for proper mitochondrial energetics in embryonic stem cells. Moreover, forcing Lima1 expression enables primed mouse and human pluripotent stem cells to be incorporated into murine pre-implantation embryos. Thus, Lima1 is a key effector molecule that mediates the pluripotency control of membrane dynamics and cellular metabolism.


Asunto(s)
Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Células Madre Embrionarias/metabolismo , Células Madre Pluripotentes/metabolismo , Animales , Blastocisto , Proliferación Celular , Desarrollo Embrionario/fisiología , Células Madre Embrionarias/citología , Femenino , Masculino , Ratones , Células Madre Pluripotentes/citología
8.
J Pathol ; 256(4): 455-467, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34939675

RESUMEN

Neutrophil extracellular traps (NETs) are extracellular structures, composed of nuclear DNA and various proteins released from neutrophils. Evidence is growing that NETs exert manifold functions in infection, immunity and cancer. Recently, NETs have been detected in colorectal cancer (CRC) tissues, but their association with disease progression and putative functional impact on tumourigenesis remained elusive. Using high-resolution stimulated emission depletion (STED) microscopy, we showed that citrullinated histone H3 (H3cit) is sufficient to specifically detect citrullinated NETs in colon cancer tissues. Among other evidence, this was supported by the close association of H3cit with de-condensed extracellular DNA, the hallmark of NETs. Extracellular DNA was reliably differentiated from nuclear condensed DNA by staining with an anti-DNA antibody, providing a novel and valuable tool to detect NETs in formalin-fixed paraffin-embedded tissues. Using these markers, the clinical association of NETs was investigated in a cohort of 85 patients with colon cancer. NETs were frequently detected (37/85, 44%) in colon cancer tissue sections and preferentially localised either only in the tumour centre or both in the tumour centre and the invasive front. Of note, citrullinated NETs were significantly associated with high histopathological tumour grades and lymph node metastasis. In vitro, purified NETs induced filopodia formation and cell motility in CRC cell lines. This was associated with increased expression of mesenchymal marker mRNAs (vimentin [VIM], fibronectin [FN1]) and epithelial-mesenchymal transition promoting transcription factors (ZEB1, Slug [SNAI2]), as well as decreased expression of the epithelial markers E-cadherin (CDH1) and epithelial cell adhesion molecule (EPCAM). These findings indicated that NETs activate an epithelial-mesenchymal transition-like process in CRC cells and may contribute to the metastatic progression of CRC. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Neoplasias del Colon , Trampas Extracelulares , Biomarcadores/metabolismo , Neoplasias del Colon/metabolismo , ADN , Transición Epitelial-Mesenquimal , Trampas Extracelulares/metabolismo , Humanos , Neutrófilos
9.
Front Cell Dev Biol ; 9: 753456, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34888306

RESUMEN

Pancreatic cancer is a very aggressive disease with 5-year survival rates of less than 10%. The constantly increasing incidence and stagnant patient outcomes despite changes in treatment regimens emphasize the requirement of a better understanding of the disease mechanisms. Challenges in treating pancreatic cancer include diagnosis at already progressed disease states due to the lack of early detection methods, rapid acquisition of therapy resistance, and high metastatic competence. Pancreatic ductal adenocarcinoma, the most prevalent type of pancreatic cancer, frequently shows dominant-active mutations in KRAS and TP53 as well as inactivation of genes involved in differentiation and cell-cycle regulation (e.g. SMAD4 and CDKN2A). Besides somatic mutations, deregulated transcription factor activities strongly contribute to disease progression. Specifically, transcriptional regulatory networks essential for proper lineage specification and differentiation during pancreas development are reactivated or become deregulated in the context of cancer and exacerbate progression towards an aggressive phenotype. This review summarizes the recent literature on transcription factor networks and epigenetic gene regulation that play a crucial role during tumorigenesis.

11.
PLoS Biol ; 19(9): e3001394, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34550965

RESUMEN

The ZEB2 transcription factor has been demonstrated to play important roles in hematopoiesis and leukemic transformation. ZEB1 is a close family member of ZEB2 but has remained more enigmatic concerning its roles in hematopoiesis. Here, we show using conditional loss-of-function approaches and bone marrow (BM) reconstitution experiments that ZEB1 plays a cell-autonomous role in hematopoietic lineage differentiation, particularly as a positive regulator of monocyte development in addition to its previously reported important role in T-cell differentiation. Analysis of existing single-cell (sc) RNA sequencing (RNA-seq) data of early hematopoiesis has revealed distinctive expression differences between Zeb1 and Zeb2 in hematopoietic stem and progenitor cell (HSPC) differentiation, with Zeb2 being more highly and broadly expressed than Zeb1 except at a key transition point (short-term HSC [ST-HSC]➔MPP1), whereby Zeb1 appears to be the dominantly expressed family member. Inducible genetic inactivation of both Zeb1 and Zeb2 using a tamoxifen-inducible Cre-mediated approach leads to acute BM failure at this transition point with increased long-term and short-term hematopoietic stem cell numbers and an accompanying decrease in all hematopoietic lineage differentiation. Bioinformatics analysis of RNA-seq data has revealed that ZEB2 acts predominantly as a transcriptional repressor involved in restraining mature hematopoietic lineage gene expression programs from being expressed too early in HSPCs. ZEB1 appears to fine-tune this repressive role during hematopoiesis to ensure hematopoietic lineage fidelity. Analysis of Rosa26 locus-based transgenic models has revealed that Zeb1 as well as Zeb2 cDNA-based overexpression within the hematopoietic system can drive extramedullary hematopoiesis/splenomegaly and enhance monocyte development. Finally, inactivation of Zeb2 alone or Zeb1/2 together was found to enhance survival in secondary MLL-AF9 acute myeloid leukemia (AML) models attesting to the oncogenic role of ZEB1/2 in AML.


Asunto(s)
Linaje de la Célula , Células Madre Hematopoyéticas/metabolismo , Leucemia Mieloide Aguda/metabolismo , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Animales , Células de la Médula Ósea/patología , Diferenciación Celular , Regulación Neoplásica de la Expresión Génica , Hematopoyesis , Células Madre Hematopoyéticas/patología , Leucemia Mieloide Aguda/patología , Ratones , Ratones Transgénicos , RNA-Seq , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética
12.
Cell Rep ; 36(8): 109588, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34433050

RESUMEN

Radial glia-like (RGL) stem cells persist in the adult mammalian hippocampus, where they generate new neurons and astrocytes throughout life. The process of adult neurogenesis is well documented, but cell-autonomous factors regulating neuronal and astroglial differentiation are incompletely understood. Here, we evaluate the functions of the transcription factor zinc-finger E-box binding homeobox 1 (ZEB1) in adult hippocampal RGL cells using a conditional-inducible mouse model. We find that ZEB1 is necessary for self-renewal of active RGL cells. Genetic deletion of Zeb1 causes a shift toward symmetric cell division that consumes the RGL cell and generates pro-neuronal progenies, resulting in an increase of newborn neurons and a decrease of newly generated astrocytes. We identify ZEB1 as positive regulator of the ets-domain transcription factor ETV5 that is critical for asymmetric division.


Asunto(s)
Autorrenovación de las Células/fisiología , Hipocampo/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Animales , Diferenciación Celular/genética , Células Ependimogliales/metabolismo , Transición Epitelial-Mesenquimal/fisiología , Hipocampo/efectos de los fármacos , Humanos , Ratones , Neurogénesis/fisiología , Neuronas/metabolismo
13.
EMBO J ; 40(18): e108647, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34459003

RESUMEN

The process of epithelial-mesenchymal transition (EMT) is fundamental for embryonic morphogenesis. Cells undergoing it lose epithelial characteristics and integrity, acquire mesenchymal features, and become motile. In cancer, this program is hijacked to confer essential changes in morphology and motility that fuel invasion. In addition, EMT is increasingly understood to orchestrate a large variety of complementary cancer features, such as tumor cell stemness, tumorigenicity, resistance to therapy and adaptation to changes in the microenvironment. In this review, we summarize recent findings related to these various classical and non-classical functions, and introduce EMT as a true tumorigenic multi-tool, involved in many aspects of cancer. We suggest that therapeutic targeting of the EMT process will-if acknowledging these complexities-be a possibility to concurrently interfere with tumor progression on many levels.


Asunto(s)
Transición Epitelial-Mesenquimal , Neoplasias/etiología , Neoplasias/patología , Microambiente Tumoral , Animales , Biomarcadores , Transformación Celular Neoplásica , Progresión de la Enfermedad , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias/metabolismo , Transducción de Señal , Microambiente Tumoral/genética
14.
Cell Death Discov ; 7(1): 138, 2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34112759

RESUMEN

The pancreas is comprised of exocrine and endocrine compartments releasing digestive enzymes into the duodenum and regulating blood glucose levels by insulin and glucagon release. Tissue homeostasis is depending on transcription factor networks, involving Ptf1α, Ngn3, Nkx6.1, and Sox9, which are already activated during organogenesis. However, proper organ function is challenged by diets of high sugar and fat content, increasing the risk of type 2 diabetes and other disorders. A detailed understanding of processes that are important for homeostasis and are impaired during type 2 diabetes is lacking. Here, we show that Zeb1-a transcription factor known for its pivotal role in epithelial-mesenchymal transition, cell plasticity, and metastasis in cancer-is expressed at low levels in epithelial cells of the pancreas and is crucial for organogenesis and pancreas function. Loss of Zeb1 in these cells result in an increase of islet mass, impaired glucose tolerance, and sensitizes to develop liver and pancreas steatosis during diabetes and obesity. Interestingly, moderate overexpression of Zeb1 results in severe pancreas agenesis and lethality after birth, due to islet insufficiency and lack of acinar structures. We show that Zeb1 induction interferes with proper differentiation, cell survival, and proliferation during pancreas formation, due to deregulated expression of endocrine-specific transcription factors. In summary, our analysis suggests a novel role of Zeb1 for homeostasis in epithelial cells that is indispensable for pancreas morphogenesis and proper organ function involving a tight regulation of Zeb1 expression.

15.
J Pathol ; 254(2): 199-211, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33675037

RESUMEN

Osteosarcoma is an often-fatal mesenchyme-derived malignancy in children and young adults. Overexpression of EMT-transcription factors (EMT-TFs) has been associated with poor clinical outcome. Here, we demonstrated that the EMT-TF ZEB1 is able to block osteoblastic differentiation in normal bone development as well as in osteosarcoma cells. Consequently, overexpression of ZEB1 in osteosarcoma characterizes poorly differentiated, highly metastatic subgroups and its depletion induces differentiation of osteosarcoma cells. Overexpression of ZEB1 in osteosarcoma is frequently associated with silencing of the imprinted DLK-DIO3 locus, which encodes for microRNAs targeting ZEB1. Epigenetic reactivation of this locus in osteosarcoma cells reduces ZEB1 expression, induces differentiation, and sensitizes to standard treatment, thus indicating therapeutic options for ZEB1-driven osteosarcomas. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Neoplasias Óseas/patología , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Osteosarcoma/patología , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Animales , Desarrollo Óseo , Neoplasias Óseas/tratamiento farmacológico , Diferenciación Celular , Línea Celular , Proliferación Celular , Epigenómica , Expresión Génica , Humanos , Células Madre Mesenquimatosas/patología , Ratones , Osteoblastos/patología , Osteosarcoma/tratamiento farmacológico , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética
16.
J Clin Invest ; 131(1)2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33108352

RESUMEN

Zeb1, a zinc finger E-box binding homeobox epithelial-mesenchymal transition (EMT) transcription factor, confers properties of "stemness," such as self-renewal, in cancer. Yet little is known about the function of Zeb1 in adult stem cells. Here, we used the hematopoietic system as a well-established paradigm of stem cell biology to evaluate Zeb1-mediated regulation of adult stem cells. We employed a conditional genetic approach using the Mx1-Cre system to specifically knock out (KO) Zeb1 in adult hematopoietic stem cells (HSCs) and their downstream progeny. Acute genetic deletion of Zeb1 led to rapid-onset thymic atrophy and apoptosis-driven loss of thymocytes and T cells. A profound cell-autonomous self-renewal defect and multilineage differentiation block were observed in Zeb1-KO HSCs. Loss of Zeb1 in HSCs activated transcriptional programs of deregulated HSC maintenance and multilineage differentiation genes and of cell polarity consisting of cytoskeleton-, lipid metabolism/lipid membrane-, and cell adhesion-related genes. Notably, epithelial cell adhesion molecule (EpCAM) expression was prodigiously upregulated in Zeb1-KO HSCs, which correlated with enhanced cell survival, diminished mitochondrial metabolism, ribosome biogenesis, and differentiation capacity and an activated transcriptomic signature associated with acute myeloid leukemia (AML) signaling. ZEB1 expression was downregulated in AML patients, and Zeb1 KO in the malignant counterparts of HSCs - leukemic stem cells (LSCs) - accelerated MLL-AF9- and Meis1a/Hoxa9-driven AML progression, implicating Zeb1 as a tumor suppressor in AML LSCs. Thus, Zeb1 acts as a transcriptional regulator in hematopoiesis, critically coordinating HSC self-renewal, apoptotic, and multilineage differentiation fates required to suppress leukemic potential in AML.


Asunto(s)
Células Madre Hematopoyéticas/metabolismo , Leucemia Mieloide Aguda/metabolismo , Células Madre Neoplásicas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Animales , Eliminación de Gen , Células Madre Hematopoyéticas/patología , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Ratones , Ratones Noqueados , Células Madre Neoplásicas/patología , Proteínas Supresoras de Tumor/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética
17.
EMBO J ; 39(17): e103209, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32692442

RESUMEN

Invasion, metastasis and therapy resistance are the major cause of cancer-associated deaths, and the EMT-inducing transcription factor ZEB1 is a crucial stimulator of these processes. While work on ZEB1 has mainly focused on its role as a transcriptional repressor, it can also act as a transcriptional activator. To further understand these two modes of action, we performed a genome-wide ZEB1 binding study in triple-negative breast cancer cells. We identified ZEB1 as a novel interactor of the AP-1 factors FOSL1 and JUN and show that, together with the Hippo pathway effector YAP, they form a transactivation complex, predominantly activating tumour-promoting genes, thereby synergising with its function as a repressor of epithelial genes. High expression of ZEB1, YAP, FOSL1 and JUN marks the aggressive claudin-low subtype of breast cancer, indicating the translational relevance of our findings. Thus, our results link critical tumour-promoting transcription factors: ZEB1, AP-1 and Hippo pathway factors. Disturbing their molecular interaction may provide a promising treatment option for aggressive cancer types.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neoplasias de la Mama/metabolismo , Transición Epitelial-Mesenquimal , Genoma Humano , Factor de Transcripción AP-1/metabolismo , Factores de Transcripción/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Neoplasias de la Mama/genética , Línea Celular Tumoral , Femenino , Humanos , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-jun/genética , Proteínas Proto-Oncogénicas c-jun/metabolismo , Factor de Transcripción AP-1/genética , Factores de Transcripción/genética , Proteínas Señalizadoras YAP , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética
18.
Nat Rev Mol Cell Biol ; 21(6): 341-352, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32300252

RESUMEN

Epithelial-mesenchymal transition (EMT) encompasses dynamic changes in cellular organization from epithelial to mesenchymal phenotypes, which leads to functional changes in cell migration and invasion. EMT occurs in a diverse range of physiological and pathological conditions and is driven by a conserved set of inducing signals, transcriptional regulators and downstream effectors. With over 5,700 publications indexed by Web of Science in 2019 alone, research on EMT is expanding rapidly. This growing interest warrants the need for a consensus among researchers when referring to and undertaking research on EMT. This Consensus Statement, mediated by 'the EMT International Association' (TEMTIA), is the outcome of a 2-year-long discussion among EMT researchers and aims to both clarify the nomenclature and provide definitions and guidelines for EMT research in future publications. We trust that these guidelines will help to reduce misunderstanding and misinterpretation of research data generated in various experimental models and to promote cross-disciplinary collaboration to identify and address key open questions in this research field. While recognizing the importance of maintaining diversity in experimental approaches and conceptual frameworks, we emphasize that lasting contributions of EMT research to increasing our understanding of developmental processes and combatting cancer and other diseases depend on the adoption of a unified terminology to describe EMT.


Asunto(s)
Investigación Biomédica/normas , Transición Epitelial-Mesenquimal , Animales , Movimiento Celular , Plasticidad de la Célula , Consenso , Biología Evolutiva/normas , Humanos , Neoplasias/patología , Terminología como Asunto
19.
Dis Model Mech ; 13(3)2020 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-32005677

RESUMEN

Cleft lip and palate are common birth defects resulting from failure of the facial processes to fuse during development. The mammalian grainyhead-like (Grhl1-3) genes play key roles in a number of tissue fusion processes including neurulation, epidermal wound healing and eyelid fusion. One family member, Grhl2, is expressed in the epithelial lining of the first pharyngeal arch in mice at embryonic day (E)10.5, prompting analysis of the role of this factor in palatogenesis. Grhl2-null mice die at E11.5 with neural tube defects and a cleft face phenotype, precluding analysis of palatal fusion at a later stage of development. However, in the first pharyngeal arch of Grhl2-null embryos, dysregulation of transcription factors that drive epithelial-mesenchymal transition (EMT) occurs. The aberrant expression of these genes is associated with a shift in RNA-splicing patterns that favours the generation of mesenchymal isoforms of numerous regulators. Driving the EMT perturbation is loss of expression of the EMT-suppressing transcription factors Ovol1 and Ovol2, which are direct GRHL2 targets. The expression of the miR-200 family of microRNAs, also GRHL2 targets, is similarly reduced, resulting in a 56-fold upregulation of Zeb1 expression, a major driver of mesenchymal cellular identity. The critical role of GRHL2 in mediating cleft palate in Zeb1-/- mice is evident, with rescue of both palatal and facial fusion seen in Grhl2-/-;Zeb1-/- embryos. These findings highlight the delicate balance between GRHL2/ZEB1 and epithelial/mesenchymal cellular identity that is essential for normal closure of the palate and face. Perturbation of this pathway may underlie cleft palate in some patients.


Asunto(s)
Embrión de Mamíferos/metabolismo , Hueso Paladar/embriología , Hueso Paladar/metabolismo , Factores de Transcripción/deficiencia , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Animales , Región Branquial/embriología , Cadherinas/metabolismo , Cruzamientos Genéticos , Embrión de Mamíferos/ultraestructura , Epidermis/embriología , Epidermis/ultraestructura , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal/genética , Epitelio/embriología , Femenino , Regulación del Desarrollo de la Expresión Génica , Masculino , Maxilar/embriología , Maxilar/patología , Mesodermo/embriología , Ratones , Ratones Noqueados , MicroARNs/genética , MicroARNs/metabolismo , Tamaño de los Órganos , Fenotipo , Embarazo , Empalme del ARN/genética , Factores de Transcripción/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/deficiencia
20.
EMBO Rep ; 21(2): e49766, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31908099

RESUMEN

Tumor progression and malignancy are frequently associated with aberrant activation of epithelial-mesenchymal transition (EMT), which orchestrates dramatic changes in gene expression, involving genetic and epigenetic regulation. External stimuli generated by tumor-stroma interactions need to be adequately processed to specifically alter expression of key EMT transcription factors and associated genes. In this issue of EMBO Reports, Wang and colleagues demonstrate how epigenetic modifiers are utilized to induce EMT and metastasis [1]. Acetylation of intestine-specific homeobox (ISX) by p300/CBP-associated factor (PCAF) induces a cascade that results in Snail and Twist activation through histone modifications by a novel complex of PCAF, ISX, and bromodomain-containing protein 4 (BRD4). These findings open novel possibilities of therapeutic intervention to inhibit EMT and metastasis in lung cancer.


Asunto(s)
Neoplasias Pulmonares , Factores de Transcripción , Proteínas de Ciclo Celular , Epigénesis Genética , Transición Epitelial-Mesenquimal , Genes Homeobox , Proteínas de Homeodominio , Humanos , Proteínas Nucleares , Factores de Transcripción p300-CBP/genética , Proteínas de Unión al GTP rho
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...