Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Glia ; 71(2): 366-376, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36196985

RESUMEN

In nocturnal animals, waking appears during the dark period while maximal non-rapid-eye-movement sleep (NREMS) with electroencephalographic slow-wave-activity (SWA) takes place at the beginning of the light period. Vigilance states associate with variable levels of neuronal activity: waking with high-frequency activity patterns while during NREMS, SWA influences neuronal activity in many brain areas. On a glial level, sleep deprivation modifies microglial morphology, but only few studies have investigated microglia through the physiological sleep-wake cycle. To quantify microglial morphology (territory, volume, ramification) throughout the 24 h light-dark cycle, we collected brain samples from inbred C57BL male mice (n = 51) every 3 h and applied a 3D-reconstruction method for microglial cells on the acquired confocal microscopy images. As microglia express regional heterogeneity and are influenced by local neuronal activity, we chose to investigate three interconnected and functionally well-characterized brain areas: the somatosensory cortex (SC), the dorsal hippocampus (HC), and the basal forebrain (BF). To temporally associate microglial morphology with vigilance stages, we performed a 24 h polysomnography in a separate group of animals (n = 6). In line with previous findings, microglia displayed de-ramification in the 12 h light- and hyper-ramification in the 12 h dark period. Notably, we found that the decrease in microglial features was most prominent within the early hours of the light period, co-occurring with maximal sleep SWA. By the end of the light period, all features reached maximum levels and remained steadily elevated throughout the dark period with minor regional differences. We propose that vigilance-stage specific neuronal activity, and SWA, could modify microglial morphology.


Asunto(s)
Microglía , Sueño , Masculino , Ratones , Animales , Ratones Endogámicos C57BL , Sueño/fisiología , Vigilia/fisiología , Electroencefalografía/métodos
2.
Development ; 149(14)2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35815619

RESUMEN

The midbrain reticular formation (MRF) is a mosaic of diverse GABAergic and glutamatergic neurons that have been associated with a variety of functions, including sleep regulation. However, the molecular characteristics and development of MRF neurons are poorly understood. As the transcription factor, Gata2 is required for the development of all GABAergic neurons derived from the embryonic mouse midbrain, we hypothesized that the genes expressed downstream of Gata2 could contribute to the diversification of GABAergic neuron subtypes in this brain region. Here, we show that Gata2 is required for the expression of several GABAergic lineage-specific transcription factors, including Nkx2-2 and Skor2, which are co-expressed in a restricted group of post-mitotic GABAergic precursors in the MRF. Both Gata2 and Nkx2-2 function is required for Skor2 expression in GABAergic precursors. In the adult mouse and rat midbrain, Nkx2-2-and Skor2-expressing GABAergic neurons locate at the boundary of the ventrolateral periaqueductal gray and the MRF, an area containing REM-off neurons regulating REM sleep. In addition to the characteristic localization, Skor2+ cells increase their activity upon REM-sleep inhibition, send projections to the dorsolateral pons, a region associated with sleep control, and are responsive to orexins, consistent with the known properties of midbrain REM-off neurons.


Asunto(s)
Neuronas GABAérgicas , Sueño REM , Animales , Neuronas GABAérgicas/metabolismo , Factor de Transcripción GATA2/genética , Factor de Transcripción GATA2/metabolismo , Proteína Homeobox Nkx-2.2/metabolismo , Mesencéfalo , Ratones , Proteínas del Tejido Nervioso/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Ratas , Sueño/fisiología , Sueño REM/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
J Hypertens ; 39(8): 1678-1688, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33710166

RESUMEN

OBJECTIVES: Night shift work is associated with high rates of hypertension and cardiometabolic disease, which are linked to disrupted circadian rhythms. We hypothesized that timed light therapy might improve disrupted circadian rhythms and stabilize diurnal control of blood pressure and glucose in night shift workers. METHODS: We randomized 24 rotating night shift workers (mean age, 36 ±â€Š13 years, 7 men) who had spent a median of 6 years on rotating night shifts (median, six night shifts per month) to 12 weeks of light therapy or no intervention and compared them with 12 daytime workers (37 ±â€Š11 years, 6 men). We measured oral glucose tolerance (OGTT), 24-h blood pressure and arterial stiffness, and the circadian profiles of melatonin, cortisol, metanephrine and nor-metanephrine at baseline, after 12 weeks of intervention, and 12 weeks after the end of intervention. RESULTS: At baseline, fewer night shift workers showed dipper status as compared with daytime workers (29 vs. 58%; P < 0.001). After 12 weeks of light therapy, there was a highly significant increase in the proportion of dippers (to 58%; P < 0.0001). We also observed a significant decrease in serum glucose during OGTT in the light therapy group (-22%; P < 0.05) with no change in serum insulin. Whilst circadian profiles of melatonin and cortisol were unchanged, plasma metanephrine and nor-metanephrine levels were significantly reduced in the light therapy group (P < 0.01). CONCLUSION: Timed light therapy improves diurnal blood pressure control and glucose tolerance in rotating night shift workers. This effect is unrelated to melatonin and cortisol but is paralleled by reduced catecholamine levels.


Asunto(s)
Catecolaminas , Melatonina , Adulto , Presión Sanguínea , Ritmo Circadiano , Humanos , Masculino , Persona de Mediana Edad , Fototerapia , Adulto Joven
4.
Duodecim ; 131(2): 151-6, 2015.
Artículo en Finés | MEDLINE | ID: mdl-26237917

RESUMEN

The central function of sleep is to keep our brain functional, but what is the restoration that sleep provides? Sleep after learning improves learning outcomes. According to the theory of synaptic homeostasis the total strength of synapses, having increased during the day, is restored during sleep, making room for the next day's experiences. According to the theory of active synaptic consolidation, repetition during sleep strengthens the synapses, and these strengthened synapses form a permanent engram. According to a recent study, removal of waste products from the brain may also be one of the functions of sleep.


Asunto(s)
Encéfalo/fisiología , Homeostasis , Aprendizaje/fisiología , Plasticidad Neuronal/fisiología , Sueño/fisiología , Sinapsis/fisiología , Humanos , Modelos Neurológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...