Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 15(12)2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37376274

RESUMEN

Current standard wound care involves dressings that provide moisture and protection; however, dressings providing active healing are still scarce and expensive. We aimed to develop an ecologically sustainable 3D printed bioactive hydrogel-based topical wound dressing targeting healing of hard-to-heal wounds, such as chronic or burn wounds, which are low on exudate. To this end, we developed a formulation composed of renewable marine components; purified extract from unfertilized salmon roe (heat-treated X, HTX), alginate from brown seaweed, and nanocellulose from tunicates. HTX is believed to facilitate the wound healing process. The components were successfully formulated into a 3D printable ink that was used to create a hydrogel lattice structure. The 3D printed hydrogel showed a HTX release profile enhancing pro-collagen I alpha 1 production in cell culture with potential of promoting wound closure rates. The dressing has recently been tested on burn wounds in Göttingen minipigs and shows accelerated wound closure and reduced inflammation. This paper describes the dressings development, mechanical properties, bioactivity, and safety.

2.
J Burn Care Res ; 44(5): 1140-1149, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-36639942

RESUMEN

Partial-thickness thermal burn wounds are characterized by a prolonged inflammatory response, oxidative stress, tissue damage, and secondary necrosis. An optimal dressing for burn wounds would reduce inflammation and oxidative stress while providing a moist, absorbent, and protective cover. We have developed an extract from unfertilized salmon roe containing components with potential anti-inflammatory and antioxidative properties, called HTX. HTX has been combined with alginate from brown algae and nanocellulose from tunicates, and 3D printed into a solid hydrogel wound dressing called Collex. Here, Collex was tested on partial thickness burn wounds in Göttingen minipigs compared to Jelonet, and a variant of Collex without HTX. We found that dermal treatment of burn wounds with Collex resulted in accelerated healing at a majority of measured points over 23 days, compared to treatment with Jelonet. In comparison to Collex without HTX, Collex enhanced healing in the first week after trauma where wound progression was pronounced. Notably, Collex reduced the inflammatory response in the early post-injury phase. The anti-inflammatory response of Collex was investigated in more detail on activated M1 macrophages. We found that Collex, as well as HTX alone, significantly reduced the secretion of pro-inflammatory interleukin-1ß as well as intracellular levels of oxidative stress. The results from this study indicate that Collex is a potent dressing for the treatment of burn wounds, with the anti-inflammatory effect of HTX beneficial in the initial phase, and the moist qualities of the hydrogel favorable both in the initial and the proceeding proliferative phase of wound healing.


Asunto(s)
Quemaduras , Porcinos , Animales , Quemaduras/tratamiento farmacológico , Alginatos/uso terapéutico , Alginatos/farmacología , Porcinos Enanos , Cicatrización de Heridas , Vendajes , Inflamación , Hidrogeles , Salmón
3.
Regen Ther ; 21: 331-341, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36110971

RESUMEN

Patients with cardiovascular disease often need replacement or bypass of a diseased blood vessel. With disadvantages of both autologous blood vessels and synthetic grafts, tissue engineering is emerging as a promising alternative of advanced therapy medicinal products for individualized blood vessels. By reconditioning of a decellularized blood vessel with the recipient's own peripheral blood, we have been able to prevent rejection without using immunosuppressants and prime grafts for efficient recellularization in vivo. Recently, decellularized veins reconditioned with autologous peripheral blood were shown to be safe and functional in a porcine in vivo study as a potential alternative for vein grafting. In this study, personalized tissue engineered arteries (P-TEA) were developed using the same methodology and evaluated for safety in a sheep in vivo model of carotid artery transplantation. Five personalized arteries were transplanted to carotid arteries and analyzed for safety and patency as well as with histology after four months in vivo. All grafts were fully patent without any occlusion or stenosis. The tissue was well cellularized with a continuous endothelial cell layer covering the luminal surface, revascularized adventitia with capillaries and no sign of rejection or infection. In summary, the results indicate that P-TEA is safe to use and has potential as clinical grafts.

4.
Macromol Biosci ; 22(11): e2200304, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36153836

RESUMEN

This article aims to show the influence of surface characteristics (microtopography, chemistry, mechanical properties) and seawater parameters on the settlement of marine micro- and macroorganisms. Polymers with nine microtopographies, three distinct mechanical properties, and wetting characteristics are immersed for one month into two contrasting coastal sites (Toulon and Kristineberg Center) and seasons (Winter and Summer). Influence of microtopography and chemistry on wetting is assessed through static contact angle and captive air bubble measurements over 3-weeks immersion in artificial seawater. Microscopic analysis, quantitative flow cytometry, metabarcoding based on the ribulose biphosphate carboxylase (rbcL) gene amplification, and sequencing are performed to characterize the settled microorganisms. Quantification of macrofoulers is done by evaluating the surface coverage and the type of organism. It is found that for long static in situ immersion, mechanical properties and non-evolutive wettability have no major influence on both abundance and diversity of biofouling assemblages, regardless of the type of organisms. The apparent contradiction with previous results, based on model organisms, may be due to the huge diversity of marine environments, both in terms of taxa and their size. Evolutive wetting properties with wetting switching back and forth over time have shown to strongly reduce the colonization by macrofoulers.


Asunto(s)
Incrustaciones Biológicas , Incrustaciones Biológicas/prevención & control , Polímeros/química , Humectabilidad , Propiedades de Superficie
5.
J Mater Sci Mater Med ; 33(10): 68, 2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36178551

RESUMEN

Percutaneous implants are frequently affected by bacterial growth at the skin-implant interface. Integration between implant and surrounding skin is important to prevent bacteria from spreading to the underlying tissue. The standard method to evaluate skin-implant integration is by histomorphometry on samples which have been placed in tissue grown in vivo or ex vivo. In this study, a biomechanical method was developed and evaluated. The integration of implants into porcine skin was studied in an ex vivo model, where pig skin samples were cultivated in a nutrient solution. Cylindrical shaped implants, consisting of polyether ether ketone (PEEK) and titanium (Ti) with different surface treatments, were implanted in the skin tissue and the skin was grown in nutrient solution for 2 weeks. The implants were then extracted from the implantation site and the mechanical force during extraction was measured as a quantitative assessment of skin-implant integration. Implants from each group were also processed for histomorphometry and the degree of epidermal downgrowth (ED) and tissue to implant contact (TIC) was measured. A higher mean pullout force was observed for the PEEK implants compared to the Ti implants. Applying nanosized hydroxyapatite (HA) on Ti and PEEK increased the pullout force compared to uncoated controls, 24% for machined and 70% for blasted Ti, and 51% for machined PEEK. Treatment of Ti and PEEK with nanosized zirconium phosphate (ZrP) did not increase the pullout force. The histomorphometry analysis showed correlation between ED and pullout force, where the pullout force was inversely proportional to ED. For TIC, no significant differences were observed between the groups of same material (i.e. Ti, Ti+HA, Ti+ZrP, and PEEK, PEEK + HA, PEEK + ZrP), but it was significantly higher for PEEK compared to Ti. Scanning electron microscopy analysis was done on samples before and after the pullout tests, showing that the ZrP coating was unaffected by the 2 week ex vivo implantation and pullout procedure, no dissolution or detachment of the coating was observed. For the HA coating, a loss of coating was seen on approximately 5% of the total surface area of the implant. Graphical abstract.


Asunto(s)
Implantes Dentales , Titanio , Animales , Benzofenonas , Durapatita , Éteres , Cetonas , Oseointegración , Polietilenglicoles , Polímeros , Propiedades de Superficie , Porcinos
6.
Bioengineering (Basel) ; 8(7)2021 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-34356204

RESUMEN

Current conventional cancer drug screening models based on two-dimensional (2D) cell culture have several flaws and there is a large need of more in vivo mimicking preclinical drug screening platforms. The microenvironment is crucial for the cells to adapt relevant in vivo characteristics and here we introduce a new cell culture system based on three-dimensional (3D) printed scaffolds using cellulose nanofibrils (CNF) pre-treated with 2,2,6,6-tetramethylpyperidine-1-oxyl (TEMPO) as the structural material component. Breast cancer cell lines, MCF7 and MDA-MB-231, were cultured in 3D TEMPO-CNF scaffolds and were shown by scanning electron microscopy (SEM) and histochemistry to grow in multiple layers as a heterogenous cell population with different morphologies, contrasting 2D cultured mono-layered cells with a morphologically homogenous cell population. Gene expression analysis demonstrated that 3D TEMPO-CNF scaffolds induced elevation of the stemness marker CD44 and the migration markers VIM and SNAI1 in MCF7 cells relative to 2D control. T47D cells confirmed the increased level of the stemness marker CD44 and migration marker VIM which was further supported by increased capacity of holoclone formation for 3D cultured cells. Therefore, TEMPO-CNF was shown to represent a promising material for 3D cell culture model systems for cancer cell applications such as drug screening.

7.
J Hand Surg Eur Vol ; 45(7): 742-747, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32558616

RESUMEN

We tested the anti-adhesional effect of a new thiol-ene-based coating in a rabbit model. In 12 New Zealand white rabbits, the periosteum and cortex of the proximal phalanx of the second toe of both hind paws was scratched. Stainless steel plates were fixated with screws. One plate was coated with DendroPrime and the other left bare. The non-operated second toes of both hind paws of an additional four rabbits served as controls. Seven weeks after surgery, the soft tissue adhesion to the plates was evaluated macroscopically, and joint mobility was measured biomechanically. Toe joint mobility was about 20% greater and statistically significant in specimens with coated plates compared with the bare plates. Soft tissue overgrowth and, in some cases, synovitis or adhesions between the plate and the tendon were observed on all bare plates but not on any of the coated plates. We conclude that the thiol-ene-based coating can improve joint mobility by about 20%. This material has a potential to reduce adhesion around plates in fracture surgery.


Asunto(s)
Placas Óseas , Fracturas Óseas , Animales , Huesos , Fijación de Fractura , Fijación Interna de Fracturas , Conejos , Tendones
8.
Ann Biomed Eng ; 47(6): 1369-1377, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30859433

RESUMEN

The treatment of the upper extremities is not as prevalent as that of the lower limbs, but it is nonetheless equally important. Today, there are no load data relating to upper extremity bone-anchored prosthesis users in the literature, but they are important in order to improve the rehabilitation protocol, design aspects and confidence of the user when it comes to loading the prosthesis in daily life. The aim of the present study was to investigate, in a population of eleven transhumeral amputees with osseointegrated implants, the load levels reached during specific prosthetic movements at maximum voluntary effort and during daily activities. The data showed a wide range of maximum load levels throughout the different activities. Furthermore, the data indicate that some test subjects felt apprehensive about loading the prosthesis, resulting in relatively low loads compared with the group as a whole. Within the limits of the present study, it was concluded that loading the implant system was subject specific, which resulted in large subject-to-subject variability. Moreover, some subjects exhibited uncertainty about the levels that could damage the fixation or the implant system. The study illustrates the diversity and uncertainty that exist in a population of transhumeral amputees treated with bone-anchored prostheses in terms of loading in daily life.


Asunto(s)
Amputados , Miembros Artificiales , Extremidad Superior/fisiología , Soporte de Peso , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Húmero/fisiología , Masculino , Persona de Mediana Edad , Movimiento , Oseointegración , Rango del Movimiento Articular , Torque
9.
J Mater Sci Mater Med ; 29(7): 104, 2018 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-29961132

RESUMEN

In the present study, a model for simulations of removal torque experiments was developed using finite element method. The interfacial retention and fracturing of the surrounding material caused by the surface features during torque was analyzed. It was hypothesized that the progression of removal torque and the phases identified in the torque response plot represents sequential fractures at the interface. The 3-dimensional finite element model fairly accurately predicts the torque required to break the fixation of acid-etched implants, and also provides insight to how sequential fractures progress downwards along the implant side.


Asunto(s)
Diseño de Prótesis Dental , Imagenología Tridimensional , Modelos Dentales , Fracturas de los Dientes/fisiopatología , Fenómenos Biomecánicos , Implantación Dental Endoósea , Implantes Dentales , Progresión de la Enfermedad , Análisis de Elementos Finitos , Humanos , Ensayo de Materiales , Oseointegración/fisiología , Polímeros/química , Programas Informáticos , Propiedades de Superficie , Titanio/química , Torque
10.
J Orthop Res ; 35(5): 1113-1122, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27341064

RESUMEN

Osseointegrated transfemoral amputation prostheses have proven successful as an alternative method to the conventional socket-type prostheses. The method improves prosthetic use and thus increases the demands imposed on the bone-implant system. The hypothesis of the present study was that the loads applied to the bone-anchored implant system of amputees would result in locations of high stress and strain transfer to the bone tissue and thus contribute to complications such as unfavourable bone remodeling and/or elevated inflammatory response and/or compromised sealing function at the tissue-abutment interface. In the study, site-specific loading measurements were made on amputees and used as input data in finite element analyses to predict the stress and strain distribution in the bone tissue. Furthermore, a tissue sample retrieved from a patient undergoing implant revision was characterized in order to evaluate the long-term tissue response around the abutment. Within the limit of the evaluated bone properties in the present experiments, it is concluded that the loads applied to the implant system may compromise the sealing function between the bone and the abutment, contributing to resorption of the bone in direct contact with the abutment at the most distal end. This was supported by observations in the retrieved clinical sample of bone resorption and the formation of a soft tissue lining along the abutment interface. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1113-1122, 2017.


Asunto(s)
Miembros Artificiales , Fémur/fisiología , Pierna/fisiología , Adulto , Anciano , Femenino , Fémur/diagnóstico por imagen , Análisis de Elementos Finitos , Humanos , Masculino , Persona de Mediana Edad , Soporte de Peso , Microtomografía por Rayos X
11.
J Mater Sci Mater Med ; 27(11): 167, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27699573

RESUMEN

The osteocyte network, through the numerous dendritic processes of osteocytes, is responsible for sensing mechanical loading and orchestrates adaptive bone remodelling by communicating with both the osteoclasts and the osteoblasts. The osteocyte network in the vicinity of implant surfaces provides insight into the bone healing process around metallic implants. Here, we investigate whether osteocytes are able to make an intimate contact with topologically modified, but micrometre smooth (S a < 0.5 µm) implant surfaces, and if sub-micron topography alters the composition of the interfacial tissue. Screw shaped, commercially pure (cp-Ti) titanium implants with (i) machined (S a = ~0.2 µm), and (ii) two-step acid-etched (HF/HNO3 and H2SO4/HCl; S a = ~0.5 µm) surfaces were inserted in Sprague Dawley rat tibia and followed for 28 days. Both surfaces showed similar bone area, while the bone-implant contact was 73 % higher for the acid-etched surface. By resin cast etching, osteocytes were observed to maintain a direct intimate contact with the acid-etched surface. Although well mineralised, the interfacial tissue showed lower Ca/P and apatite-to-collagen ratios at the acid-etched surface, while mineral crystallinity and the carbonate-to-phosphate ratios were comparable for both implant surfaces. The interfacial tissue composition may therefore vary with changes in implant surface topography, independently of the amount of bone formed. Implant surfaces that influence bone to have higher amounts of organic matrix without affecting the crystallinity or the carbonate content of the mineral phase presumably result in a more resilient interfacial tissue, better able to resist crack development during functional loading than densely mineralised bone.


Asunto(s)
Osteocitos/efectos de los fármacos , Prótesis e Implantes , Titanio/química , Animales , Remodelación Ósea , Huesos/química , Fosfatos de Calcio/química , Carbonatos/química , Comunicación Celular , Microscopía Electrónica , Oseointegración , Osteocitos/citología , Ratas , Ratas Sprague-Dawley , Espectrometría Raman , Propiedades de Superficie , Tibia/efectos de los fármacos , Tibia/patología
12.
Acta Biomater ; 20: 165-175, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25848727

RESUMEN

Commercially pure titanium (cp-Ti) is regarded as the state-of-the-art material for bone-anchored dental devices, whereas the mechanically stronger alloy (Ti-6Al-4V), made of titanium, aluminum (Al) and vanadium (V), is regarded as the material of choice for high-load applications. There is a call for the development of new alloys, not only to eliminate the potential toxic effect of Al and V but also to meet the challenges imposed on dental and maxillofacial reconstructive devices, for example. The present work evaluates a novel, dual-stage, acid-etched, Ti-Ta-Nb-Zr alloy implant, consisting of elements that create low toxicity, with the potential to promote osseointegration in vivo. The alloy implants (denoted Ti-Ta-Nb-Zr) were evaluated after 7 days and 28 days in a rat tibia model, with reference to commercially pure titanium grade 4 (denoted Ti). Analyses were performed with respect to removal torque, histomorphometry and gene expression. The Ti-Ta-Nb-Zr showed a significant increase in implant stability over time in contrast to the Ti. Further, the histological and gene expression analyses suggested faster healing around the Ti-Ta-Nb-Zr, as judged by the enhanced remodeling, and mineralization, of the early-formed woven bone and the multiple positive correlations between genes denoting inflammation, bone formation and remodeling. Based on the present experiments, it is concluded that the Ti-Ta-Nb-Zr alloy becomes osseointegrated to at least a similar degree to that of pure titanium implants. This alloy is therefore emerging as a novel implant material for clinical evaluation.


Asunto(s)
Aleaciones/farmacología , Huesos/efectos de los fármacos , Animales , Fenómenos Biomecánicos/efectos de los fármacos , Calcificación Fisiológica/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Recuento de Células , Muerte Celular/efectos de los fármacos , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Implantes Experimentales , Masculino , Ratones , Microscopía Electrónica de Rastreo , Espectroscopía de Fotoelectrones , Ratas Sprague-Dawley , Propiedades de Superficie
13.
J Mech Behav Biomed Mater ; 34: 83-92, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24566379

RESUMEN

Osseointegration is a prerequisite for achieving a stable long-term fixation and load-bearing capacity of bone anchored implants. Removal torque measurements are often used experimentally to evaluate the fixation of osseointegrated screw-shaped implants. However, a detailed understanding of the way different factors influence the result of removal torque measurements is lacking. The present study aims to identify the main factors contributing to anchorage. Individual factors important for implant fixation were identified using a model system with an experimental design in which cylindrical or screw-shaped samples were embedded in thermosetting polymers, in order to eliminate biological variation. Within the limits of the present study, it is concluded that surface topography and the mechanical properties of the medium surrounding the implant affect the maximum removal torque. In addition to displaying effects individually, these factors demonstrate interplay between them. The rotational speed was found not to influence the removal torque measurements within the investigated range.


Asunto(s)
Prótesis e Implantes , Torque , Oseointegración , Poliuretanos , Propiedades de Superficie , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...