Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 63(19): 8531-8536, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38695157

RESUMEN

Crystalline ceramics are candidate materials for the immobilization of radionuclides, particularly transuranics (such as U, Pu, and Am), arising from the nuclear fuel cycle. Due to the α-decay of transuranics and the associated recoil of the parent nucleus, crystalline materials may eventually be rendered amorphous through changes to the crystal lattice caused by these recoil events. Previous work has shown irradiation of titanate-based ceramics to change the local cation environment significantly, particularly in the case of Ti which was shown to change from 6- to 5-fold coordination. Here, this work expands the Ti-based study to investigate the behavior in Fe-based materials, using LaFeO3 as an example material. Irradiation was simulated by heavy ion implantation of the bulk LaFeO3 ceramic, with the resulting amorphous layer characterized with grazing angle X-ray absorption spectroscopy (GA-XAS). Insights into the Fe speciation changes exhibited by the amorphized surface layer were provided through quantitative analysis, including pre-edge analysis, and modeling of the extended X-ray absorption fine structure (EXAFS), of the GA-XAS data.

2.
Sci Rep ; 13(1): 12776, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37550380

RESUMEN

ThTi2O6 derived compounds with the brannerite structure were designed, synthesised, and characterised with the aim of stabilising incorporation of U5+ or U6+, at dilute concentration. Appropriate charge compensation was targeted by co-substitution of Gd3+, Ca2+, Al3+, or Cr3+, on the Th or Ti site. U L3 edge X-ray Absorption Near Edge Spectroscopy (XANES) and High Energy Resolution Fluorescence Detected U M4 edge XANES evidenced U5+ as the major oxidation state in all compounds, with a minor fraction of U6+ (2-13%). The balance of X-ray and Raman spectroscopy data support uranate, rather than uranyl, as the dominant U6+ speciation in the reported brannerites. It is considered that the U6+ concentration was limited by unfavourable electrostatic repulsion arising from substitution in the octahedral Th or Ti sites, which share two or three edges, respectively, with neighbouring polyhedra in the brannerite structure.

3.
Sci Rep ; 13(1): 10328, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37365272

RESUMEN

Crystal chemical design principles were applied to synthesise novel U4+ dominant and titanium excess betafite phases Ca1.15(5)U0.56(4)Zr0.17(2)Ti2.19(2)O7 and Ca1.10(4)U0.68(4)Zr0.15(3)Ti2.12(2)O7, in high yield (85-95 wt%), and ceramic density reaching 99% of theoretical. Substitution of Ti on the A-site of the pyrochlore structure, in excess of full B-site occupancy, enabled the radius ratio (rA/rB = 1.69) to be tuned into the pyrochlore stability field, approximately 1.48 ≲ rA/rB ≲ 1.78, in contrast to the archetype composition CaUTi2O7 (rA/rB = 1.75). U L3-edge XANES and U 4f7/2 and U 4f5/2 XPS data evidenced U4+ as the dominant speciation, consistent with the determined chemical compositions. The new betafite phases, and further analysis reported herein, point to a wider family of actinide betafite pyrochlores that could be stabilised by application of the underlying crystal chemical principle applied here.

4.
Sci Rep ; 13(1): 9329, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37291129

RESUMEN

Indium (In) is a neutron absorbing additive that could feasibly be used to mitigate criticality in ceramic wasteforms containing Pu in the immobilised form, for which zirconolite (nominally CaZrTi2O7) is a candidate host phase. Herein, the solid solutions Ca1-xZr1-xIn2xTi2O7 (0.10 ≤ x ≤ 1.00; air synthesis) and Ca1-xUxZrTi2-2xIn2xO7 (x = 0.05, 0.10; air and argon synthesis) were investigated by conventional solid state sintering at a temperature of 1350 °C maintained for 20 h, with a view to characterise In3+ substitution behaviour in the zirconolite phase across the Ca2+, Zr4+ and Ti4+ sites. When targeting Ca1-xZr1-xIn2xTi2O7, single phase zirconolite-2M was formed at In concentrations of 0.10 ≤ x ≤ 0.20; beyond x ≥ 0.20, a number of secondary In-containing phases were stabilised. Zirconolite-2M remained a constituent of the phase assemblage up to a concentration of x = 0.80, albeit at relatively low concentration beyond x ≥ 0.40. It was not possible to synthesise the In2Ti2O7 end member compound using a solid state route. Analysis of the In K-edge XANES spectra in the single phase zirconolite-2M compounds confirmed that the In inventory was speciated as trivalent In3+, consistent with targeted oxidation state. However, fitting of the EXAFS region using the zirconolite-2M structural model was consistent with In3+ cations accommodated within the Ti4+ site, contrary to the targeted substitution scheme. When deploying U as a surrogate for immobilised Pu in the Ca1-xUxZrTi2-2xIn2xO7 solid solution, it was demonstrated that, for both x = 0.05 and 0.10, In3+ was successfully able to stabilise zirconolite-2M when U was distributed predominantly as both U4+ and average U5+, when synthesised under argon and air, respectively, determined by U L3-edge XANES analysis.


Asunto(s)
Indio , Espectroscopía de Absorción de Rayos X , Argón , Oxidación-Reducción
5.
Sci Rep ; 13(1): 3374, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36854709

RESUMEN

Portland cement-based grouts used for radioactive waste immobilisation contain a Ca- and Si-rich binder phase, known as calcium-silicate-hydrate (C-S-H). Depending on the blend of cement used, the Ca/Si ratio can vary considerably. A range of C-S-H minerals with Ca/Si ratios from 0.6 to 1.6 were synthesised and contacted with aqueous U(VI) at 0.5 mM and 10 mM concentrations. Solid-state 29Si MAS-NMR spectroscopy was applied to probe the Si coordination environment in U(VI)-contacted C-S-H minerals and, in conjunction with U LIII-edge X-ray absorption spectroscopy analysis, inferences of the fate of U(VI) in these systems were made. At moderate or high Ca/Si ratios, uranophane-type uranyl silicates or Ca-uranates dominated, while at the lowest Ca/Si ratios, the formation of a Ca-bearing uranyl silicate mineral, similar to haiweeite (Ca[(UO2)2Si5O12(OH)2]·3H2O) or Ca-bearing weeksite (Ca2(UO2)2Si6O15·10H2O) was identified. This study highlights the influence of Ca/Si ratio on uranyl sequestration, of interest in the development of post-closure safety models for U-bearing radioactive waste disposal.

6.
Inorg Chem ; 61(15): 5744-5756, 2022 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-35377149

RESUMEN

Zirconolite is considered to be a suitable wasteform material for the immobilization of Pu and other minor actinide species produced through advanced nuclear separations. Here, we present a comprehensive investigation of Dy3+ incorporation within the self-charge balancing zirconolite Ca1-xZr1-xDy2xTi2O7 solid solution, with the view to simulate trivalent minor actinide immobilization. Compositions in the substitution range 0.10 ≤ x ≤ 1.00 (Δx = 0.10) were fabricated by a conventional mixed oxide synthesis, with a two-step sintering regime at 1400 °C in air for 48 h. Three distinct coexisting phase fields were identified, with single-phase zirconolite-2M identified only for x = 0.10. A structural transformation from zirconolite-2M to zirconolite-4M occurred in the range 0.20 ≤ x ≤ 0.30, while a mixed-phase assemblage of zirconolite-4M and cubic pyrochlore was evident at Dy concentrations 0.40 ≤ x ≤ 0.50. Compositions for which x ≥ 0.60 were consistent with single-phase pyrochlore. The formation of zirconolite-4M and pyrochlore polytype phases, with increasing Dy content, was confirmed by high-resolution transmission electron microscopy, coupled with selected area electron diffraction. Analysis of the Dy L3-edge XANES region confirmed that Dy was present uniformly as Dy3+, remaining analogous to Am3+. Fitting of the EXAFS region was consistent with Dy3+ cations distributed across both Ca2+ and Zr4+ sites in both zirconolite-2M and 4M, in agreement with the targeted self-compensating substitution scheme, whereas Dy3+ was 8-fold coordinated in the pyrochlore structure. The observed phase fields were contextualized within the existing literature, demonstrating that phase transitions in CaZrTi2O7-REE3+Ti2O7 binary solid solutions are fundamentally controlled by the ratio of ionic radius of REE3+ cations.

7.
J Synchrotron Radiat ; 29(Pt 1): 89-102, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34985426

RESUMEN

Portland cement based grouts used for radioactive waste immobilization contain high replacement levels of supplementary cementitious materials, including blast-furnace slag and fly ash. The minerals formed upon hydration of these cements may have capacity for binding actinide elements present in radioactive waste. In this work, the minerals ettringite (Ca6Al2(SO4)3(OH)12·26H2O) and hydrotalcite (Mg6Al2(OH)16CO3·4H2O) were selected to investigate the importance of minor cement hydrate phases in sequestering and immobilizing UVI from radioactive waste streams. U LIII-edge X-ray absorption spectroscopy (XAS) was used to probe the UVI coordination environment in contact with these minerals. For the first time, solid-state 27Al magic angle spinning nuclear magnetic resonance (MAS-NMR) spectroscopy was applied to probe the Al coordination environment in these UVI-contacted minerals and make inferences on the UVI coordination, in conjunction with the X-ray spectroscopy analyses. The U LIII-edge XAS analysis of the UVI-contacted ettringite phases found them to be similar (>∼70%) to the uranyl oxyhydroxides present in a mixed becquerelite/metaschoepite mineral. Fitting of the EXAFS region, in combination with 27Al NMR analysis, indicated that a disordered Ca- or Al-bearing UVI secondary phase also formed. For the UVI-contacted hydrotalcite phases, the XAS and 27Al NMR data were interpreted as being similar to uranyl carbonate, that was likely Mg-containing.

8.
J Synchrotron Radiat ; 29(Pt 1): 276-279, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34985445

RESUMEN

HERMES, a graphical user interface software tool, is presented, for pre-processing X-ray absorption spectroscopy (XAS) data from laboratory Rowland circle spectrometers, to meet the data handling needs of a growing community of practice. HERMES enables laboratory XAS data to be displayed for quality assessment, merging of data sets, polynomial fitting of smoothly varying data, and correction of data to the true energy scale and for dead-time and leakage effects. The software is written in Java 15 programming language, and runs on major computer operating systems, with graphics implementation using the JFreeChart toolkit. HERMES is freely available and distributed under an open source licence.


Asunto(s)
Laboratorios , Interfaz Usuario-Computador , Algoritmos , Programas Informáticos , Espectroscopía de Absorción de Rayos X
9.
Commun Chem ; 5(1): 163, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36697907

RESUMEN

Advanced Cr-doped UO2 fuels are essential for driving safe and efficient generation of nuclear energy. Although widely deployed, little is known about their fundamental chemistry, which is a critical gap for development of new fuel materials and radioactive waste management strategies. Utilising an original approach, we directly evidence the chemistry of Cr(3+)2O3-doped U(4+)O2. Advanced high-flux, high-spectral purity X-ray absorption spectroscopy (XAS), corroborated by diffraction, Raman spectroscopy and high energy resolved fluorescence detection-XAS, is used to establish that Cr2+ directly substitutes for U4+, accompanied by U5+ and oxygen vacancy charge compensation. Extension of the analysis to heat-treated simulant nuclear fuel reveals a mixed Cr2+/3+ oxidation state, with Cr in more than one physical form, explaining the substantial discrepancies that exist in the literature. Successful demonstration of this analytical advance, and the scientific underpinning it provides, opens opportunities for an expansion in the range of dopants utilised in advanced UO2 fuels.

10.
Inorg Chem ; 60(23): 18112-18121, 2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34787401

RESUMEN

The synthesis, characterization, and crystal structure of a novel (dominant) uranium(V) brannerite of composition U1.09(6)Ti1.29(3)Al0.71(3)O6 is reported, as determined from Rietveld analysis of the high-resolution neutron powder diffraction data. Examination of the UTi2-xAlxO6 system demonstrated the formation of brannerite-structured compounds with varying Al3+ and U5+ contents, from U0.93(6)Ti1.64(3)Al0.36(3)O6 to U0.89(6)Ti1.00(3)Al1.00(3)O6. Substitution of Al3+ for Ti4+, with U5+ charge compensation, resulted in near-linear changes in the b and c unit cell parameters and the overall unit cell volume, as expected from ionic radii considerations. The presence of U5+ as the dominant oxidation state in near-single-phase brannerite compositions was evidenced by complementary laboratory U L3-edge and high-energy-resolution fluorescence-detected U M4-edge X-ray absorption near-edge spectroscopy. No brannerite phase was found for compositions with Al3+/Ti4+ > 1, which would require a U6+ contribution for charge compensation. These data expand the crystal chemistry of uranium brannerites to the stabilization of dominant uranium(V) brannerites by the substitution of trivalent cations, such as Al3+, on the Ti4+ site.

11.
Inorg Chem ; 60(18): 14105-14115, 2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34469139

RESUMEN

The photocatalytic and dielectric behaviors of Aurivillius oxyfluorides such as Bi2TiO4F2 depend sensitively on their crystal structure and symmetry but these are not fully understood. Our experimental work combined with symmetry analysis demonstrates the factors that influence anion order and how this might be tuned to break inversion symmetry. We explore an experimental approach to explore anion order, which combines Rietveld analysis with strain analysis.

12.
Inorg Chem ; 60(4): 2553-2562, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33491452

RESUMEN

Low-temperature soft chemical synthesis routes to transition-metal nitrides are of interest as an alternative to conventional high-temperature ammonolysis reactions involving large volumes of chemotoxic NH3 gas. One such method is the reaction between metal oxides and NaNH2 at ca. 200 °C to yield the counterpart nitrides; however, there remains uncertainty regarding the reaction mechanism and product phase assemblage (in particular, noncrystalline components). Here, we extend the chemical tool box and mechanistic understanding of such reactions, demonstrating the nitridation of Fe3O4 by reaction with NaNH2 at 170-190 °C, via a pseudomorphic reaction. The more reduced Fe3O4 precursor enabled nitride formation at lower temperatures than the previously reported equivalent reaction with Fe2O3. The product phase assemblage, characterized by X-ray diffraction, thermogravimetric analysis, and 57Fe Mössbauer spectroscopy, comprised 49-59 mol % ε-Fe2+xN, accompanied by 29-39 mol % FeO1-xNx and 8-14 mol % γ″-FeN. The oxynitride phase was apparently noncrystalline in the recovered product but could be crystallized by heating at 180 °C. Although synthesis of transition-metal nitrides is achieved by reaction of the counterpart oxide with NaNH2, it is evident from this investigation that the product phase assemblage may be complex, which could prove a limitation if the objective is to produce a single-phase product with well-defined electrical, magnetic, or other physical properties for applications. However, the significant yield of the FeO1-xNx oxynitride phase identified in this study opens the possibility for the synthesis of metastable oxynitride phases in high yield, by reaction of a metal oxide substrate with NaNH2, with either careful control of H2O concentration in the system or postsynthetic hydrolysis and crystallization.

13.
J Hazard Mater ; 401: 123764, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33113733

RESUMEN

Materials from GeoMelt® In-Container Vitrification (ICV)™ of simulant UK nuclear wastes were characterised to understand the partitioning of elements, including inactive surrogates for radionuclide species of interest, within the heterogeneous products. Aqueous durability analysis was performed to assess the potential disposability of the resulting wasteforms. The vitrification trial aimed to immobilise a variety of simulant legacy waste streams representative of decommissioning operations in the UK, including plutonium contaminated material, Magnox sludges and ion-exchange materials, which were vitrified upon the addition of glass forming additives. Two trials with different wastes were characterised, with the resultant vitreous wasteforms comprising olivine and pyroxene crystalline minerals within glassy matrices. Plutonium surrogate elements were immobilised within the glassy fraction rather than partitioning into crystalline phases. All vitrified products exhibited comparable or improved durability to existing UK high level waste vitrified nuclear wasteforms over a 28 day period.

14.
Inorg Chem ; 59(23): 17364-17373, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33175500

RESUMEN

Aliquots of well-characterized Ce-brannerite were annealed at different temperatures under N2 and synthetic air atmospheres. The autoreduction of cerium at temperature was observed using thermogravimetry to monitor the mass lost as O2 was evolved. It has been shown that the brannerite structure is stable with a small fraction of Ce3+, charge-balanced by O vacancies. The range of stability was determined to be Ce4+0.975Ti2O5.95, the fully oxidized end-member, to Ce3.87+0.975Ti2O5.886, as reduced by annealing under N2 at 1075 °C. Higher temperatures under N2 led to further reduction of Ce and collapse of the brannerite structure. Ce-brannerite remained stable on heating to 1300 °C in synthetic air, with multiple steps of oxidation and reduction corresponding to changes in the average Ce oxidation state. We propose that the autoreduction of Ce at temperature is an important factor in the overall thermodynamic stability of Ce-brannerite at temperature and has a large impact on the energetics of formation of Ce-brannerite.

15.
Chem Mater ; 32(19): 8700-8712, 2020 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-33122876

RESUMEN

The Dion-Jacobson (DJ) family of perovskite-related materials have recently attracted interest due to their polar structures and properties, resulting from hybrid-improper mechanisms for ferroelectricity in n = 2 systems and from proper mechanisms in n = 3 CsBi2Ti2NbO10. We report here a combined experimental and computational study on analogous n = 3 CsLn 2Ti2NbO10 (Ln = La, Nd) materials. Density functional theory calculations reveal the shallow energy landscape in these systems and give an understanding of the competing structural models suggested by neutron and electron diffraction studies. The structural disorder resulting from the shallow energy landscape breaks inversion symmetry at a local level, consistent with the observed second-harmonic generation. This study reveals the potential to tune between proper and hybrid-improper mechanisms by composition in the DJ family. The disorder and shallow energy landscape have implications for designing functional materials with properties reliant on competing low-energy phases such as relaxors and antiferroelectrics.

16.
Environ Sci Process Impacts ; 22(9): 1916, 2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32785410

RESUMEN

Correction for 'Multimodal X-ray microanalysis of a UFeO4 particle: evidence for the environmental stability of ternary U(v) oxides from depleted uranium munitions testing' by Daniel E. Crean et al., Environ. Sci.: Processes Impacts, 2020, DOI: 10.1039/d0em00243g.

17.
Nat Commun ; 11(1): 4001, 2020 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-32778661

RESUMEN

Uranium (U) is a ubiquitous element in the Earth's crust at ~2 ppm. In anoxic environments, soluble hexavalent uranium (U(VI)) is reduced and immobilized. The underlying reduction mechanism is unknown but likely of critical importance to explain the geochemical behavior of U. Here, we tackle the mechanism of reduction of U(VI) by the mixed-valence iron oxide, magnetite. Through high-end spectroscopic and microscopic tools, we demonstrate that the reduction proceeds first through surface-associated U(VI) to form pentavalent U, U(V). U(V) persists on the surface of magnetite and is further reduced to tetravalent UO2 as nanocrystals (~1-2 nm) with random orientations inside nanowires. Through nanoparticle re-orientation and coalescence, the nanowires collapse into ordered UO2 nanoclusters. This work provides evidence for a transient U nanowire structure that may have implications for uranium isotope fractionation as well as for the molecular-scale understanding of nuclear waste temporal evolution and the reductive remediation of uranium contamination.

18.
Environ Sci Process Impacts ; 22(7): 1577-1585, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32632425

RESUMEN

An environmentally aged radioactive particle of UFeO4 recovered from soil contaminated with munitions depleted uranium (DU) was characterised by microbeam synchrotron X-ray analysis. Imaging of uranium speciation by spatially resolved X-ray diffraction (µ-XRD) and X-ray absorption spectroscopy (µ-XAS) was used to localise UFeO4 in the particle, which was coincident with a distribution of U(v). The U oxidation state was confirmed using X-ray Absorption Near Edge Structure (µ-XANES) spectroscopy as +4.9 ± 0.15. Le-Bail fitting of the particle powder XRD pattern confirmed the presence of UFeO4 and a minor alteration product identified as chernikovite (H3O)(UO2)(PO4)·3H2O. Refined unit cell parameters for UFeO4 were in good agreement with previously published values. Uranium-oxygen interatomic distances in the first co-ordination sphere were determined by fitting of Extended X-ray Absorption Fine Structure (µ-EXAFS) spectroscopy. The average first shell U-O distance was 2.148 ± 0.012 Å, corresponding to a U valence of +4.96 ± 0.13 using bond valence sum analysis. Using bond distances from the published structure of UFeO4, U and Fe bond valence sums were calculated as +5.00 and +2.83 respectively, supporting the spectroscopic analysis and confirming the presence of a U(v)/Fe(iii) pair. Overall this investigation provides important evidence for the stability of U(v) ternary oxides, in oxic, variably moist surface environment conditions for at least 25 years.


Asunto(s)
Contaminantes Radiactivos del Suelo , Uranio , Microanálisis por Sonda Electrónica , Compuestos Férricos , Óxidos , Espectroscopía de Absorción de Rayos X
19.
RSC Adv ; 10(54): 32497-32510, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35516487

RESUMEN

The immobilisation and disposal of fissile materials from civil and defence nuclear programmes requires compatible, passively safe and proliferation resistant wasteforms. In this study, we demonstrate the application of an albite glass-zirconolite ceramic material for immobilisation of chloride contaminated plutonium oxide residues in the United Kingdom. The chlorine solubility limit in the albite glass phase was determined to be 1.0 ± 0.1 wt%, above the maximum envisaged chorine inventory of 0.5 wt%, attainable at a 20 wt% PuO2 incorporation rate within the ceramic. Cl K-edge of X-ray Absorption Near Edge Spectroscopy (XANES) was exploited to confirm partitioning of Cl to the glass phase, speciated as the chloride anion, with exsolution of crystalline NaCl above the chlorine solubility limit. Combinatorial fitting of Cl XANES data, utilising a library of chemically plausible reference spectra, demonstrated the association of Cl with Na and Ca modifier cations, with environments characteristic of the aluminosilicate chloride minerals eudialyte, sodalite, chlorellestadite and afghanite. Adventitious incorporation of Ca, Zr and Ti within the albite glass phase apparently assists chlorine solubility, by templating a local chemical environment characteristic of the mineral reference compounds. The partitioning of Ce, as a Pu analogue, within the glass-ceramic was not adversely impacted by incorporation of Cl. The significance of this research is in demonstrating the compatibility of the glass-ceramic wasteform toward Cl solubility at the expected incorporation rate, below the determined solubility limit. Thus, an upstream heat treatment facility to remove chloride contamination, as specified in the current conceptual flowsheet, would not be required from the perspective of wasteform compatibility, thus providing scope to de-risk the technology roadmap and reduce the projected capital and operational plant costs.

20.
Rev Sci Instrum ; 90(2): 024106, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30831699

RESUMEN

X-ray absorption fine structure (XAFS) and x-ray emission spectroscopy (XES) are advanced x-ray spectroscopies that impact a wide range of disciplines. However, unlike the majority of other spectroscopic methods, XAFS and XES are accompanied by an unusual access model, wherein the dominant use of the technique is for premier research studies at world-class facilities, i.e., synchrotron x-ray light sources. In this paper, we report the design and performance of an improved XAFS and XES spectrometer based on the general conceptual design of Seidler et al. [Rev. Sci. Instrum. 85, 113906 (2014)]. New developments include reduced mechanical degrees of freedom, much-increased flux, and a wider Bragg angle range to enable extended x-ray absorption fine structure (EXAFS) measurement and analysis for the first time with this type of modern laboratory XAFS configuration. This instrument enables a new class of routine applications that are incompatible with the mission and access model of the synchrotron light sources. To illustrate this, we provide numerous examples of x-ray absorption near edge structure (XANES), EXAFS, and XES results for a variety of problems and energy ranges. Highlights include XAFS and XES measurements of battery electrode materials, EXAFS of Ni with full modeling of results to validate monochromator performance, valence-to-core XES for 3d transition metal compounds, and uranium XANES and XES for different oxidation states. Taken en masse, these results further support the growing perspective that modern laboratory-based XAFS and XES have the potential to develop a new branch of analytical chemistry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...