Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Mol Oncol ; 17(8): 1595-1612, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37081824

RESUMEN

Tissue inhibitor of metalloproteinases-1 (TIMP-1) regulates the proteolytic activity of matrix metalloproteinases (MMPs), playing an important role in the homeostasis of the extracellular matrix. Beyond its well-known role in tissue maintenance, TIMP-1 has been associated with multiple MMP-independent cytokine-like functions. The protein structure of TIMP-1, with two distinct domains, one interacting with MMPs and another able to bind multiple partners, provides a rationale for this multifunctionality. The identification of CD63 as a cell surface receptor for TIMP-1, able to mediate intracellular signaling through the Erk/MAPK axis, provided a molecular basis for the role of TIMP-1 in cellular signaling. However, several lines of evidence suggest that TIMP-1 may be able to associate with many interaction partners, thus attaining multiple functions. To enable the identification of previously unknown interaction partners that may underpin the core cellular functions of TIMP-1, known as well as unknown, we performed a yeast two-hybrid screening using a mammary gland complementary DNA (cDNA) library. We report here the identification of multiple interactors, including MHC class II-associated invariant chain γ (CD74). We verified that CD74 interacts with TIMP-1 in breast cancer cells and that this interaction contributes to cellular internalization of TIMP-1 and mediates intracellular signaling through the Akt signaling axis in breast cancer cells. These data provide new insights into the complex nature of the functions of TIMP-1 and their potential mechanistic basis.


Asunto(s)
Neoplasias de la Mama , Inhibidor Tisular de Metaloproteinasa-1 , Humanos , Femenino , Inhibidor Tisular de Metaloproteinasa-1/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Membrana Celular/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Unión Proteica
3.
Biomolecules ; 11(10)2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34680166

RESUMEN

Multidrug resistance (MDR) is a major challenge in cancer treatment, and the breast cancer resistance protein (BCRP) is an important target in the search for new MDR-reversing drugs. With the aim of discovering new potential BCRP inhibitors, the crude extract of leaves of Eremophila galeata, a plant endemic to Australia, was investigated for inhibitory activity of parental (HT29par) as well as BCRP-overexpressing HT29 colon cancer cells resistant to the chemotherapeutic SN-38 (i.e., HT29SN38 cells). This identified a fraction, eluted with 40% acetonitrile on a solid-phase extraction column, which showed weak growth-inhibitory activity on HT29SN38 cells when administered alone, but exhibited concentration-dependent growth inhibition when administered in combination with SN-38. The major constituent in this fraction was isolated and found to be 5,3',5'-trihydroxy-3,6,7,4'-tetramethoxyflavone (2), which at a concentration of 25 µg/mL potentiated the growth-inhibitory activity of SN-38 to a degree comparable to that of the known BCRP inhibitor Ko143 at 1 µM. A dye accumulation experiment suggested that 2 inhibits BCRP, and docking studies showed that 2 binds to the same BCRP site as SN-38. These results indicate that 2 acts synergistically with SN-38, with 2 being a BCRP efflux pump inhibitor while SN-38 inhibits topoisomerase-1.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Neoplasias del Colon/tratamiento farmacológico , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Eremophila (Planta)/química , Flavonoides/farmacología , Proteínas de Neoplasias/genética , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Resistencia a Antineoplásicos/genética , Sinergismo Farmacológico , Flavonoides/química , Flavonoides/aislamiento & purificación , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HT29 , Humanos , Irinotecán/efectos adversos , Irinotecán/farmacología
4.
Front Oncol ; 11: 669270, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34055636

RESUMEN

To investigate the relationship between non-coding RNAs [especially circular RNAs (circRNAs)] and docetaxel resistance in breast cancer, and to find potential predictive biomarkers for taxane-containing therapies, we have performed transcriptome and microRNA (miRNA) sequencing for two established docetaxel-resistant breast cancer (DRBC) cell lines and their docetaxel-sensitive parental cell lines. Our analyses revealed differences between circRNA signatures in the docetaxel-resistant and -sensitive breast cancer cells, and discovered circRNAs generated by multidrug-resistance genes in taxane-resistant cancer cells. In DRBC cells, circABCB1 was identified and validated as a circRNA that is strongly up-regulated, whereas circEPHA3.1 and circEPHA3.2 are strongly down-regulated. Furthermore, we investigated the potential functions of these circRNAs by bioinformatics analysis, and miRNA analysis was performed to uncover potential interactions between circRNAs and miRNAs. Our data showed that circABCB1, circEPHA3.1 and circEPHA3.2 may sponge up eight significantly differentially expressed miRNAs that are associated with chemotherapy and contribute to docetaxel resistance via the PI3K-Akt and AGE-RAGE signaling pathways. We also integrated differential expression data of mRNA, long non-coding RNA, circRNA, and miRNA to gain a global profile of multi-level RNA changes in DRBC cells, and compared them with changes in DNA copy numbers in the same cell lines. We found that Chromosome 7 q21.12-q21.2 was a common region dominated by multi-level RNA overexpression and DNA amplification, indicating that overexpression of the RNA molecules transcribed from this region may result from DNA amplification during stepwise exposure to docetaxel. These findings may help to further our understanding of the mechanisms underlying docetaxel resistance in breast cancer.

5.
Cancers (Basel) ; 13(6)2021 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-33799432

RESUMEN

Docetaxel-a taxane-based chemotherapeutic agent-was the first treatment to demonstrate significant improvements in overall survival in men with metastatic castration-resistant prostate cancer (mCRPC). However, the response to docetaxel is generally short-lived, and relapse eventually occurs due to the development of resistance. To explore the mechanisms of acquired docetaxel resistance in prostate cancer (PCa) and set these in the context of androgen deprivation therapy, we established docetaxel-resistant PCa cell lines, derived from the androgen-dependent LNCaP cell line, and from the LNCaP lineage-derived androgen-independent C4-2B sub-line. We generated two docetaxel-resistant LNCaPR and C4-2BR sub-lines, with IC50 values 77- and 50-fold higher than those of the LNCaP and C4-2B parental cells, respectively. We performed gene expression analysis of the matched sub-lines and found several alterations that may confer docetaxel resistance. In addition to increased expression of ABCB1, an ATP-binding cassette (ABC) transporter, and a well-known gene associated with development of docetaxel resistance, we identified genes associated with androgen signaling, cell survival, and overexpression of ncRNAs. In conclusion, we identified multiple mechanisms that may be associated with the development of taxane drug resistance in PCa. Actioning these mechanisms could provide a potential approach to re-sensitization of docetaxel-resistant PCa cells to docetaxel treatment and thereby further add to the life-prolonging effects of this drug in men with mCRPC.

7.
Int J Mol Sci ; 21(14)2020 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-32708825

RESUMEN

In this study we investigated the use of cancer cell protein expression of ABCG2 to predict efficacy of systemic first-line irinotecan containing therapy in patients with metastatic colorectal cancer (mCRC). From a Danish national cohort, we identified 119 mCRC patients treated with irinotecan containing therapy in first-line setting. Among these, 108 were eligible for analyses. Immunohistochemistry (IHC) analyses were performed on the primary tumor tissue in order to classify samples as high or low presence of ABCG2 protein. Data were then associated with patient outcome (objective response (OR), progression free survival (PFS) and overall survival (OS)). ABCG2 protein expression in the basolateral membrane was high (score 3+) in 33% of the patients. Exploratory analyses revealed a significant interaction between ABCG2 score, adjuvant treatment and OR (p = 0.041) in the 101 patients with evaluable disease. Patients with low ABCG2 (score 0-2) and no prior adjuvant therapy had a significantly higher odds ratio of 5.6 (Confidence Interval (CI) 1.68-18.7; p = 0.005) for obtaining OR. In contrast, no significant associations between ABCG2 expression and PFS or OS were found. These results suggest that measurement of the ABCG2 drug efflux pump might be used to select patients with mCRC for irinotecan treatment. However, additional studies are warranted before conclusions regarding a clinical use can be made. Moreover, patients with high ABCG2 immunoreactivity could be candidates for specific ABCG2 inhibition treatment in combination with irinotecan.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/análisis , Neoplasias Colorrectales/tratamiento farmacológico , Irinotecán/uso terapéutico , Proteínas de Neoplasias/análisis , Inhibidores de Topoisomerasa I/uso terapéutico , Anciano , Biomarcadores de Tumor/análisis , Colon/efectos de los fármacos , Colon/patología , Neoplasias Colorrectales/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Metástasis de la Neoplasia/tratamiento farmacológico , Metástasis de la Neoplasia/patología , Recto/efectos de los fármacos , Recto/patología , Estudios Retrospectivos
8.
Basic Clin Pharmacol Toxicol ; 127(4): 329-337, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32628359

RESUMEN

SCO-101 (Endovion) was discontinued 20 years ago as a new drug under development against sickle cell anaemia. Data from the phase 1 studies remained unpublished. New data indicate that SCO-101 might be efficacious as add-on therapy in cancer. Thus, we report the results from the four phase 1 trials performed between 2001 and 2002. Adult volunteers received SCO-101 or placebo in four independent trials. Adverse events were recorded, and SCO-101 was determined for pharmacokinetic analysis. Ninety-two volunteers completed the trials. The most remarkable adverse effect was a transient and dose-dependent increase in unconjugated bilirubin. Plasma SCO-101 elimination was approximately log linear, with apparent oral clearances of between 315 and 2103 mL/h for single doses, and between 121 and 2433 mL/h at steady state following oral administration. There was a marked decrease in clearance with increasing dose, and for repeated dose versus single dose. Tmax was greater, and Cmax and AUC∞ were lower in the fed state compared to the fasted state. Exposure was equivalent in males and females and for African Americans and Caucasians. In conclusion, SCO-101 appears to be a safe drug with a predictable PK profile. Its efficacy as add-on to standard anticancer drugs has yet to be defined.


Asunto(s)
Antineoplásicos/administración & dosificación , Antineoplásicos/efectos adversos , Antineoplásicos/farmacocinética , Canales de Cloruro/antagonistas & inhibidores , Administración Oral , Adulto , Antineoplásicos/sangre , Área Bajo la Curva , Estudios de Cohortes , Método Doble Ciego , Femenino , Voluntarios Sanos , Humanos , Masculino , Farmacocinética
9.
Exp Hematol ; 87: 33-41.e4, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32619459

RESUMEN

Multiple myeloma remains a hard-to-treat cancer as all patients eventually progress because of drug resistance. Thus, there is a need for novel and non-cross-resistant treatment options, and we aimed to address this issue by introducing a new immuno-oncology drug (APO010) in multiple myeloma treatment. APO010 is a hexameric Fas-ligand that mimics cytotoxic T-lymphocyte signaling through the Fas-receptor to induce apoptosis. APO010 is currently in clinical trials with multiple myeloma patients. Thus, an understanding of the mechanisms contributing to resistance to APO010 will be essential for future clinical studies with APO010, and it might be possible to develop strategies to circumvent this resistance. We developed APO010-resistant variants of human multiple myeloma cell lines (LP1, MOLP-8, and KMS-12-BM) and a human Burkitt's lymphoma cell line (Raji) by exposing the cells to gradually increasing concentrations of APO010 over a period of 6-12 months. The resistant cell lines were characterized on the basis of immunocytochemistry, Fas-receptor protein expression, mRNA expression analysis, and pathway analysis. APO010-resistant cell lines exhibited a 4- to 520-fold increase in resistance to APO010 and still remained sensitive to other chemotherapeutics. Downregulation of the Fas-receptor protein expression was observed in all resistant cell lines. mRNA expression analysis of the resistant versus parental cell lines confirmed a significant alteration in FAS expression between sensitive and resistant cell lines (p = 0.03), while pathway analysis revealed alterations in mRNA signaling pathways of Fas. On the basis of the pre-clinical data obtained, it can be concluded that downregulation of Fas-receptor can mediate resistance to APO010.


Asunto(s)
Linfoma de Burkitt/tratamiento farmacológico , Resistencia a Antineoplásicos/efectos de los fármacos , Mieloma Múltiple/tratamiento farmacológico , Proteínas Recombinantes de Fusión/farmacología , Transducción de Señal/efectos de los fármacos , Linfoma de Burkitt/metabolismo , Linfoma de Burkitt/patología , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Mieloma Múltiple/metabolismo , Mieloma Múltiple/patología , Proteínas de Neoplasias/metabolismo , Receptor fas/metabolismo
10.
Cancers (Basel) ; 12(4)2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32326511

RESUMEN

Biomarker-guided treatment for patients with colon cancer is needed. We tested ABCG2 and topoisomerase 1 (TOP1) mRNA expression as predictive biomarkers for irinotecan benefit in the PETACC-3 patient cohort. The present study included 580 patients with mRNA expression data from Stage III colon cancer samples from the PETACC-3 study, which randomized the patients to Fluorouracil/leucovorin (5FUL) +/- irinotecan. The primary end-points were recurrence free survival (RFS) and overall survival (OS). Patients were divided into one group with high ABCG2 expression (above median) and low TOP-1 expression (below 75 percentile) ("resistant") (n = 216) and another group including all other combinations of these two genes ("sensitive") (n = 364). The rationale for the cut-offs were based on the distribution of expression levels in the PETACC-3 Stage II set of patients, where ABCG2 was unimodal and TOP1 was bimodal with a high expression level mode in the top quarter of the patients. Cox proportional hazards regression was used to estimate the hazard ratios and the association between variables and end-points and log-rank tests to assess the statistical significance of differences in survival between groups. Kaplan-Meier estimates of the survival functions were used for visualization and estimation of survival rates at specific time points. Significant differences were found for both RFS (Hazard ratio (HR): 0.63 (0.44-0.92); p = 0.016) and OS (HR: 0.60 (0.39-0.93); p = 0.02) between the two biomarker groups when the patients received FOLFIRI (5FUL+irinotecan). Considering only the Microsatellite Stable (MSS) and Microsatellite Instability-Low (MSI-L) patients (n = 470), the differences were even more pronounced. In contrast, no significant differences were observed between the groups when patients received 5FUL alone. This study shows that the combination of ABCG2 and TOP1 gene expression significantly divided the Stage III colon cancer patients into two groups regarding benefit from adjuvant treatment with FOLFIRI but not 5FUL.

11.
Cells ; 9(3)2020 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-32143347

RESUMEN

ATP-binding cassette (ABC) transporters, such as breast cancer resistance protein (BCRP), are key players in resistance to multiple anti-cancer drugs, leading to cancer treatment failure and cancer-related death. Currently, there are no clinically approved drugs for reversal of cancer drug resistance caused by ABC transporters. This study investigated if a novel drug candidate, SCO-201, could inhibit BCRP and reverse BCRP-mediated drug resistance. We applied in vitro cell viability assays in SN-38 (7-Ethyl-10-hydroxycamptothecin)-resistant colon cancer cells and in non-cancer cells with ectopic expression of BCRP. SCO-201 reversed resistance to SN-38 (active metabolite of irinotecan) in both model systems. Dye efflux assays, bidirectional transport assays, and ATPase assays demonstrated that SCO-201 inhibits BCRP. In silico interaction analyses supported the ATPase assay data and suggest that SCO-201 competes with SN-38 for the BCRP drug-binding site. To analyze for inhibition of other transporters or cytochrome P450 (CYP) enzymes, we performed enzyme and transporter assays by in vitro drug metabolism and pharmacokinetics studies, which demonstrated that SCO-201 selectively inhibited BCRP and neither inhibited nor induced CYPs. We conclude that SCO-201 is a specific, potent, and potentially non-toxic drug candidate for the reversal of BCRP-mediated resistance in cancer cells.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Antineoplásicos/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/efectos de los fármacos , Transportadoras de Casetes de Unión a ATP/antagonistas & inhibidores , Transportadoras de Casetes de Unión a ATP/metabolismo , Transporte Biológico/efectos de los fármacos , Línea Celular Tumoral , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Humanos , Irinotecán/farmacología , Proteínas de Neoplasias/metabolismo
12.
Eur J Pharm Sci ; 148: 105315, 2020 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-32201343

RESUMEN

One of the primary barriers in treating cancer patients is the development of resistance to the available treatments. This is the case for treatment of triple negative breast cancer (TNBC) with docetaxel, which is part of the neoadjuvant treatment for TNBC. The novel compound SCO-101 is under investigation for its potential treatment effect in several types of drug resistant cancer. The aim of this study was to establish a pharmacodynamic model that captures the effect of docetaxel, SCO-101, and the combination on cell survival in docetaxel resistant MDA-MB-231 TNBC cells. Several combination models were compared and a recently published combination model, the general pharmacodynamic interaction model (GPDI), provided the best fit. The model allowed for description and quantification of the interaction between docetaxel and SCO-101 with respects to both maximal effect and potency. Based on this model, SCO-101 has a synergistic effect with docetaxel. This synergy is not present in the maximal effect, but the combination of SCO-101 and docetaxel showed an approximately 60% increase in potency compared to docetaxel alone. Furthermore, the predicted model surface for the combination provided key information regarding promising dose ratios and dose levels for further studies of the combination. Lastly, the study presents a use case for the GPDI model, which provides a way to quantify and interpret drug-drug interactions.


Asunto(s)
Antineoplásicos/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Docetaxel/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Interacciones Farmacológicas , Sinergismo Farmacológico , Femenino , Humanos
13.
Int J Mol Sci ; 20(23)2019 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-31810358

RESUMEN

The burden of colorectal cancer (CRC) is considerable-approximately 1.8 million people are diagnosed each year with CRC and of these about half will succumb to the disease. In the case of CRC, there is strong evidence that an early diagnosis leads to a better prognosis, with metastatic CRC having a 5-year survival that is only slightly greater than 10% compared with up to 90% for stage I CRC. Clearly, biomarkers for the early detection of CRC would have a major clinical impact. We implemented a coherent gel-based proteomics biomarker discovery platform for the identification of clinically useful biomarkers for the early detection of CRC. Potential protein biomarkers were identified by a 2D gel-based analysis of a cohort composed of 128 CRC and site-matched normal tissue biopsies. Potential biomarkers were prioritized and assays to quantitatively measure plasma expression of the candidate biomarkers were developed. Those biomarkers that fulfilled the preset criteria for technical validity were validated in a case-control set of plasma samples, including 70 patients with CRC, adenomas, or non-cancer diseases and healthy individuals in each group. We identified 63 consistently upregulated polypeptides (factor of four-fold or more) in our proteomics analysis. We selected 10 out of these 63 upregulated polypeptides, and established assays to measure the concentration of each one of the ten biomarkers in plasma samples. Biomarker levels were analyzed in plasma samples from healthy individuals, individuals with adenomas, CRC patients, and patients with non-cancer diseases and we identified one protein, tropomyosin 3 (Tpm3) that could discriminate CRC at a significant level (p = 0.0146). Our results suggest that at least one of the identified proteins, Tpm3, could be used as a biomarker in the early detection of CRC, and further studies should provide unequivocal evidence for the real-life clinical validity and usefulness of Tpm3.


Asunto(s)
Biomarcadores de Tumor/sangre , Neoplasias Colorrectales/sangre , Detección Precoz del Cáncer , Proteómica , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias Colorrectales/patología , Supervivencia sin Enfermedad , Electroforesis en Gel Bidimensional , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pronóstico
14.
Mol Oncol ; 13(12): 2646-2662, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31545548

RESUMEN

Colorectal cancer (CRC) is the third most prevalent cancer worldwide causing an estimated 700 000 deaths annually. Different types of treatment are available for patients with advanced metastatic colorectal cancer, including targeted biological agents, such as cetuximab, a monoclonal antibody that targets EGFR. We have previously reported a study indicating multiple levels of interaction between metallopeptidase inhibitor 1 (TIMP-1) and the epidermal growth factor (EGF) signaling axis, which could explain how TIMP-1 levels can affect the antitumor effects of EGFR inhibitors. We also reported an association between TIMP-1-mediated cell invasive behavior and KRAS status. To gain insight into the molecular mechanisms underlying the effects of TIMP-1 in CRC, we examined by transcriptomics, proteomics, and kinase activity profiling a matched pair of isogenic human CRC isogenic DLD-1 CRC cell clones, bearing either an hemizygous KRAS wild-type allele or KRAS G13D mutant allele, exposed, or not, to TIMP-1. Omics analysis of the two cell lines identified the receptor tyrosine kinase c-Kit, a proto-oncogene that can modulate cell proliferation and invasion in CRC, as a target for TIMP-1. We found that exposure of DLD-1 CRC cells to exogenously added TIMP-1 promoted phosphorylation of c-Kit, indicative of a stimulatory effect of TIMP-1 on the c-Kit signaling axis. In addition, TIMP-1 inhibited c-Kit shedding in CRC cells grown in the presence of exogenous TIMP-1. Given the regulatory roles that c-Kit plays in cell proliferation and migration, and the realization that c-Kit is an important oncogene in CRC, it is likely that some of the biological effects of TIMP-1 overexpression in CRC may be exerted through its effect on c-Kit signaling.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Proteínas Proto-Oncogénicas c-kit/metabolismo , Transducción de Señal , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Humanos , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-kit/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Inhibidor Tisular de Metaloproteinasa-1/genética
15.
BMC Cancer ; 19(1): 573, 2019 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-31196001

RESUMEN

BACKGROUND: Treatment options in metastatic breast cancer are limited. New therapies preferable with predictive biomarkers are needed. The aim of these trials was to investigate if gene copy number of the topoisomerase 1 gene was predictive of response to the topoisomerase inhibitor irinotecan. METHODS: Two open-label, single-arm phase II studies including HER2 positive and negative patients were conducted. Patients were eligible for inclusion if the primary tumor or a metastatic lesion had increased expression of the topoisomerase 1 gene defined as a TOP1 gene copy number of ≥4 or a TOP1/CEN20 ratio of ≥2. Patients were treated with irinotecan +/- trastuzumab weekly for 4 weeks following 2 weeks break, until progression or unacceptable toxicities. Evaluation scans were performed every 6 weeks. Primary endpoint was clinical benefit rate defined as the fraction of patients with stable disease for ≥4 months. RESULTS: The pre-planned number of 18 patients in each trial was not reached, thus no formal statistical analysis could be performed. Nine patients with HER2 negative disease and three patients with HER2 positive disease were included. Three patients obtained a partial remission and two patients had SD. CONCLUSIONS: The trials did not include the planned number of patients. No association between gene copy number of the topoisomerase 1 gene and response to irinotecan could be proved, however a clinical benefit was found in 5/12 patients and in 2/3 patients with HER2 positive disease. This could call for further investigation of the drug in the metastatic setting, especially in HER2 positive BC. TRIAL REGISTRATION: Eudract registration numbers 2012-002348-26 and 2012-002347-23 . Registration date August 20th 2012.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , ADN-Topoisomerasas de Tipo I/genética , Irinotecán/uso terapéutico , Inhibidores de Topoisomerasa I/uso terapéutico , Trastuzumab/uso terapéutico , Anciano , Biomarcadores Farmacológicos , Neoplasias de la Mama/diagnóstico , Quimioterapia Combinada , Femenino , Dosificación de Gen , Humanos , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Pronóstico , Receptor ErbB-2/metabolismo , Resultado del Tratamiento
16.
Sci Rep ; 8(1): 17970, 2018 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-30568280

RESUMEN

Resistance to adjuvant systemic treatment, including taxanes (docetaxel and paclitaxel) is a major clinical problem for breast cancer patients. lncRNAs (long non-coding RNAs) are non-coding transcripts, which have recently emerged as important players in a variety of biological processes, including cancer development and chemotherapy resistance. However, the contribution of lncRNAs to docetaxel resistance in breast cancer and the relationship between lncRNAs and taxane-resistance genes are still unclear. Here, we performed comprehensive RNA sequencing and analyses on two docetaxel-resistant breast cancer cell lines (MCF7-RES and MDA-RES) and their docetaxel-sensitive parental cell lines. We identified protein coding genes and pathways that may contribute to docetaxel resistance. More importantly, we identified lncRNAs that were consistently up-regulated or down-regulated in both the MCF7-RES and MDA-RES cells. The co-expression network and location analyses pinpointed four overexpressed lncRNAs located within or near the ABCB1 (ATP-binding cassette subfamily B member 1) locus, which might up-regulate the expression of ABCB1. We also identified the lncRNA EPB41L4A-AS2 (EPB41L4A Antisense RNA 2) as a potential biomarker for docetaxel sensitivity. These findings have improved our understanding of the mechanisms underlying docetaxel resistance in breast cancer and have provided potential biomarkers to predict the response to docetaxel in breast cancer patients.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/genética , Docetaxel/farmacología , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , ARN Largo no Codificante/genética , ARN Mensajero/genética , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Biología Computacional/métodos , Femenino , Perfilación de la Expresión Génica , Ontología de Genes , Redes Reguladoras de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos
17.
J Cell Physiol ; 233(4): 2815-2823, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28475219

RESUMEN

Cell therapy is an emerging fields in the treatment of various diseases such as cardiovascular, pulmonary, hepatic, and neoplastic diseases. Stem cells are an integral tool for cell therapy. Multipotent stem cells are an important class of stem cells which have the ability to self-renew through dividing and developing into multiple specific cell types in a specific tissue or organ. These cells are capable to activate or inhibit a sequence of cellular and molecular pathways leading to anti-inflammatory and anti-apoptotic effects which might contribute to the treatment of various diseases. It has been showed that multipotent stem cells exert their therapeutic effects via inhibition/activation of a sequence of cellular and molecular pathways. Although the advantages of multipotent stem cells are numerous, further investigation is still necessary to clarify the biology and safety of these cells before they could be considered as a potential treatment for different types of diseases. This review summarizes different features of multipotent stem cells including isolation, differentiation, and therapeutic applications.


Asunto(s)
Células Madre Multipotentes/citología , Células Madre Multipotentes/trasplante , Trasplante de Células Madre , Animales , Separación Celular , Ensayos Clínicos como Asunto , Humanos , Neoplasias/terapia
18.
J Cell Physiol ; 233(2): 888-900, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28084621

RESUMEN

Early diagnostic is one of the most important steps in cancer therapy which helps to design and choose a better therapeutic approach. The finding of biomarkers in various levels including genomics, transcriptomics, and proteomics levels could provide better treatment for various cancers such as chronic lymphocytic leukemia (CLL). The CLL is the one of main lymphoid malignancies which is specified by aggregation of mature B lymphocytes. Among different biomarkers (e.g., CD38, chromosomes abnormalities, ZAP-70, TP53, and microRNA [miRNA]), miRNAs have appeared as new diagnostic and therapeutic biomarkers in patients with the CLL disease. Multiple lines of evidence indicated that deregulation of miRNAs could be associated with pathological events which are present in the CLL. These molecules have an effect on a variety of targets such as Bcl2, c-fos, c-Myc, TP53, TCL1, and STAT3 which play critical roles in the CLL pathogenesis. It has been shown that expression of miRNAs could lead to the activation of B cells and B cell antigen receptor (BCR). Moreover, exosomes containing miRNAs are one of the other molecules which could contribute to BCR stimulation and progression of CLL cells. Hence, miRNAs and exosomes released from CLL cells could be used as potential diagnostic and therapeutic biomarkers for CLL. This critical review focuses on a very important aspect of CLL based on biomarker discovery covers the pros and cons of using miRNAs as important diagnostics and therapeutics biomarkers for this deadly disease.


Asunto(s)
Biomarcadores de Tumor/genética , Leucemia Linfocítica Crónica de Células B/genética , MicroARNs/genética , Animales , Regulación Leucémica de la Expresión Génica , Humanos , Leucemia Linfocítica Crónica de Células B/diagnóstico , Leucemia Linfocítica Crónica de Células B/metabolismo , Leucemia Linfocítica Crónica de Células B/terapia , Técnicas de Diagnóstico Molecular , Valor Predictivo de las Pruebas , Pronóstico , Transducción de Señal
19.
Sci Rep ; 7(1): 15324, 2017 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-29127303

RESUMEN

Oesophageal carcinoma is the fourth leading cause of cancer-related death in China, and more than 90% of these tumours are oesophageal squamous cell carcinoma (ESCC). Although several ESCC genomic sequencing studies have identified mutated somatic genes, the number of samples in each study was relatively small, and the molecular basis of ESCC has not been fully elucidated. Here, we performed an integrated analysis of 490 tumours by combining the genomic data from 7 previous ESCC projects. We identified 18 significantly mutated genes (SMGs). PTEN, DCDC1 and CUL3 were first reported as SMGs in ESCC. Notably, the AJUBA mutations and mutational signature4 were significantly correlated with a poorer survival in patients with ESCC. Hierarchical clustering analysis of the copy number alteration (CNA) of cancer gene census (CGC) genes in ESCC patients revealed three subtypes, and subtype3 exhibited more CNAs and marked for worse prognosis compared with subtype2. Moreover, database annotation suggested that two significantly differential CNA genes (PIK3CA and FBXW7) between subtype3 and subtype2 may serve as therapeutic drug targets. This study has extended our knowledge of the genetic basis of ESCC and shed some light into the clinical relevance, which would help improve the therapy and prognosis of ESCC patients.


Asunto(s)
Carcinoma de Células Escamosas/genética , Bases de Datos de Ácidos Nucleicos , Neoplasias Esofágicas/genética , Mutación , Proteínas de Neoplasias/genética , Carcinoma de Células Escamosas/diagnóstico , Neoplasias Esofágicas/diagnóstico , Femenino , Humanos , Masculino , Pronóstico
20.
Int J Mol Sci ; 18(9)2017 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-28880238

RESUMEN

BACKGROUND: One of the main chemotherapeutic drugs used on a routine basis in patients with metastatic colorectal cancer ((m)CRC) is the topoisomerase-1 inhibitor, irinotecan. However, its usefulness is limited by the pre-existing or inevitable development of resistance. The ATP-binding cassette (ABC) transporter ABCG2/breast cancer resistance protein (BRCP) through its function in xenobiotic clearance might play an important role in irinotecan resistance. With a goal to evaluate the clinical significance of ABCG2 measurements, we here review the current literature on ABCG2 in relation to irinotecan treatment in CRC patients. RESULTS: Few studies have evaluated the association between ABCG2 gene or protein expression and prognosis in CRC patients. Discordant results were reported. The discrepancies might be explained by the use of different criteria for interpretation of results in the immunohistochemistry studies. Only one large study evaluated the ABCG2 protein expression and efficacy of irinotecan in mCRC (CAIRO study, n = 566). This study failed to demonstrate any correlation between ABCG2 protein expression in the primary tumor and response to irinotecan-based treatment. We recently raised questions on how to evaluate ABCG2 immunoreactivity patterns, and the results in the CAIRO study might be influenced by using a different scoring protocol than the one proposed by us. In contrast, our recent exploratory study of ABCG2 mRNA expression in 580 patients with stage III primary CRC (subgroup from the randomized PETACC-3 study) indicated that high ABCG2 tumor tissue mRNA expression might be predictive for lack of efficacy of irinotecan. CONCLUSION: The biological role of ABCG2 in predicting clinical irinotecan sensitivity/resistance in CRC is uncertain. In particular, the significance of ABCG2 cellular localization needs to be established. Data concerning ABCG2 mRNA expression and prediction of adjuvant irinotecan efficacy are still sparse and need to be confirmed.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Camptotecina/análogos & derivados , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Animales , Camptotecina/uso terapéutico , Humanos , Inmunohistoquímica , Irinotecán
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...