Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 13(10): e10588, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37869428

RESUMEN

Functional trait approaches are common in ecology, but a lack of clear hypotheses on how traits relate to environmental gradients (i.e., trait-niche relationships) often makes uncovering mechanisms difficult. Furthermore, measures of community functional structure differ in their implications, yet inferences are seldom compared among metrics. Community-weighted mean trait values (CWMs), a common measure, are largely driven by the most common species and thus do not reflect community-wide trait-niche relationships per se. Alternatively, trait-niche relationships can be estimated across a larger group of species using hierarchical joint species distribution models (JSDMs), quantified by a parameter Γ. We investigated how inferences about trait-niche relationships are affected by the choice of metric. Using deadwood-dependent (saproxylic) beetles in fragmented Finnish forests, we followed a protocol for investigating trait-niche relationships by (1) identifying environmental filters (climate, forest age, and deadwood volume), (2) relating these to an ecological function (dispersal ability), and (3) identifying traits related to this function (wing morphology). We tested 18 hypothesized dispersal relationships using both CWM and Γ estimates across these environmental gradients. CWMs were more likely than Γ to show support for trait-niche relationships. Up to 13% of species' realized niches were explained by dispersal traits, but the directions of effects were consistent with fewer than 11%-39% of our 18 trait-niche hypotheses (depending on the metric used). This highlights the difficulty in connecting morphological traits and ecological functions in insects, despite the clear conceptual link between landscape connectivity and flight-related traits. Caution is thus warranted in hypothesis development, particularly where apparent trait-function links are less clear. Inferences differ when CWMs versus Γ estimates are used, necessitating the choice of a metric that reflects study questions. CWMs help explain the effects of environmental gradients on community trait composition, whereas the effects of traits on species' niches are better estimated using hierarchical JSDMs.

2.
Funct Ecol ; 37(1): 150-161, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37064507

RESUMEN

Climate, topography and the 3D structure of forests are major drivers affecting local species communities. However, little is known about how the specific functional traits of saproxylic (wood-living) beetles, involved in the recycling of wood, might be affected by those environmental characteristics.Here, we combine ecological and morphological traits available for saproxylic beetles and airborne laser scanning (ALS) data in Bayesian trait-based joint species distribution models to study how traits drive the distributions of more than 230 species in temperate forests of Europe.We found that elevation (as a proxy for temperature and precipitation) and the proportion of conifers played important roles in species occurrences while variables related to habitat heterogeneity and forest complexity were less relevant. Furthermore, we showed that local communities were shaped by environmental variation primarily through their ecological traits whereas morphological traits were involved only marginally. As predicted, ecological traits influenced species' responses to forest structure, and to other environmental variation, with canopy niche, wood decay niche and host preference as the most important ecological traits. Conversely, no links between morphological traits and environmental characteristics were observed. Both models, however, revealed strong phylogenetic signal in species' response to environmental characteristics.These findings imply that alterations of climate and tree species composition have the potential to alter saproxylic beetle communities in temperate forests. Additionally, ecological traits help explain species' responses to environmental characteristics and thus should prove useful in predicting their responses to future change. It remains challenging, however, to link simple morphological traits to species' complex ecological niches. Read the free Plain Language Summary for this article on the Journal blog.

3.
Oecologia ; 197(3): 807-816, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34657178

RESUMEN

In production forests, a common silvicultural objective is enhancing tree growth rates. The growth rate influences both mechanical and biochemical properties of wood, which may have an impact on dead wood inhabiting (i.e. saproxylic) species. In this study, we tested for the first time whether tree growth rates affect dead-wood associated assemblages in general and the occurrence of red-listed species in particular. We sampled saproxylic beetles (eclector traps) and fungi (DNA metabarcoding of wood samples) in dead trunks of Norway spruce (Picea abies), which had different growth rates within the same hemiboreal forests in Sweden. A high proportion of fungi showed a positive association to increasing tree growth. This resulted in higher fungal richness in fast-grown trees both at the trunk scale and across multiple studied trunks. Such patterns were not observed for saproxylic beetles. However, a set of species (both beetles and fungi) preferred slow-grown wood. Moreover, the total number of red-listed species was highest in slow-grown trunks. We conclude that dead wood from slow-grown trees hosts relatively fewer saproxylic species, but a part of these may be vulnerable to production forestry. It implies that slow-grown trees should be a target in nature conservation. However, where slow-grown trees are absent, for instance in forests managed for a high biomass production, increasing the volumes of dead wood from fast-grown trees may support many species.


Asunto(s)
Escarabajos , Árboles , Animales , Ecosistema , Agricultura Forestal , Bosques
4.
Curr Opin Insect Sci ; 47: 103-110, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34146735

RESUMEN

Global change poses new challenges for pest management. Omnivorous predatory arthropods play an important role in pest management, yet their potential has not been fully explored. Not only do they consume prey, but their plant-feeding induces plant defences that decrease herbivores' performance, and increases production of volatiles that attract natural enemies. Growing evidence from different plant-arthropod systems indicates the generality of plant defence induction following omnivore plant-feeding. Furthermore, these responses appear to affect other organisms (e.g. plant viruses), altering multi-trophic interactions. Here, we review the dual role of omnivores (as predators and plant inducers), identify knowledge gaps and provide future perspectives to increase our understanding of omnivores' multiple functions, and how this can be applied to advance plant protection strategies.


Asunto(s)
Artrópodos , Animales , Herbivoria , Plantas , Conducta Predatoria
5.
Sci Rep ; 11(1): 12359, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-34117296

RESUMEN

The ectoparasitic mite, Varroa destructor, is unarguably the leading cause of honeybee (Apis mellifera) mortality worldwide through its role as a vector for lethal viruses, in particular, strains of the Deformed wing virus (DWV) and Acute bee paralysis virus (ABPV) complexes. Several honeybee populations across Europe have well-documented adaptations of mite-resistant traits but little is known about host adaptations towards the virus infections vectored by the mite. The aim of this study was to assess and compare the possible contribution of adapted virus tolerance and/or resistance to the enhanced survival of four well-documented mite-resistant honeybee populations from Norway, Sweden, The Netherlands and France, in relation to unselected mite-susceptible honeybees. Caged adult bees and laboratory reared larvae, from colonies of these four populations, were inoculated with DWV and ABPV in a series of feeding infection experiments, while control groups received virus-free food. Virus infections were monitored using RT-qPCR assays in individuals sampled over a time course. In both adults and larvae the DWV and ABPV infection dynamics were nearly identical in all groups, but all mite-resistant honeybee populations had significantly higher survival rates compared to the mite-susceptible honeybees. These results suggest that adapted virus tolerance is an important component of survival mechanisms.


Asunto(s)
Abejas/virología , Resistencia a la Enfermedad , Interacciones Huésped-Patógeno , Varroidae/patogenicidad , Animales , Abejas/parasitología , Dicistroviridae/patogenicidad , Virus ARN/patogenicidad , Varroidae/virología
6.
BMC Ecol ; 20(1): 16, 2020 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-32293396

RESUMEN

Unfortunately, the original version of the article [1] contained an error. The author has brought to our attention that the article title is truncated in the published version. The correct title is American foulbrood in a honeybee colony: spore-symptom relationship and feedbacks between disease and colony development. Instead, it was published inadvertently as American foulbrood in a honeybee colony: spore symptom relationship and feedbacks due to an error occurred during the production process.

7.
BMC Ecol ; 20(1): 15, 2020 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-32143610

RESUMEN

BACKGROUND: The most severe bacterial disease of honeybees is American foulbrood (AFB). The epidemiology of AFB is driven by the extreme spore resilience, the difficulty of bees to remove these spores, and the considerable incidence of undetected spore-producing colonies. The honeybee collective defence mechanisms and their feedback on colony development, which involves a division of labour at multiple levels of colony organization, are difficult to model. To better predict disease outbreaks we need to understand the feedback between colony development and disease progression within the colony. We therefore developed Bayesian models with data from forty AFB-diseased colonies monitored over an entire foraging season to (i) investigate the relationship between spore production and symptoms, (ii) disentangle the feedback loops between AFB epidemiology and natural colony development, and (iii) discuss whether larger insect societies promote or limit within-colony disease transmission. RESULTS: Rather than identifying a fixed spore count threshold for clinical symptoms, we estimated the probabilities around the relationship between spore counts and symptoms, taking into account modulators such as brood amount/number of bees and time post infection. We identified a decrease over time in the bees-to-brood ratio related to disease development, which should ultimately induce colony collapse. Lastly, two contrasting theories predict that larger colonies could promote either higher (classical epidemiological SIR-model) or lower (increasing spatial nest segregation and more effective pathogen removal) disease prevalence. CONCLUSIONS: AFB followed the predictions of the SIR-model, partly because disease prevalence and brood removal are decoupled, with worker bees acting more as disease vectors, infecting new brood, than as agents of social immunity, by removing infected brood. We therefore established a direct link between disease prevalence and social group size for a eusocial insect. We furthermore provide a probabilistic description of the relationship between AFB spore counts and symptoms, and how disease development and colony strength over a season modulate this relationship. These results help to better understand disease development within honeybee colonies, provide important estimates for further epidemiological modelling, and gained important insights into the optimal sampling strategy for practical beekeeping and honeybee research.


Asunto(s)
Esporas , Animales , Teorema de Bayes , Abejas , Larva , Estados Unidos
8.
Microb Ecol ; 79(3): 743-755, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31506760

RESUMEN

The main current methods for controlling American Foulbrood (AFB) in honeybees, caused by the bacterial pathogen Paenibacillus larvae, are enforced incineration or prophylactic antibiotic treatment, neither of which is fully satisfactory. This has led to an increased interest in the natural relationships between the pathogenic and mutualistic microorganisms of the honeybee microbiome, in particular, the antagonistic effects of Honeybee-Specific Lactic Acid Bacteria (hbs-LAB) against P. larvae. We investigated whether supplemental administration of these bacteria affected P. larvae infection at colony level over an entire flowering season. Over the season, the supplements affected neither colony-level hbs-LAB composition nor naturally subclinical or clinical P. larvae spore levels. The composition of hbs-LAB in colonies was, however, more diverse in apiaries with a history of clinical AFB, although this was also unrelated to P. larvae spore levels. During the experiments, we also showed that qPCR could detect a wider range of hbs-LAB, with higher specificity and sensitivity than mass spectrometry. Honeybee colonies are complex super-organisms where social immune defenses, natural homeostatic mechanisms, and microbiome diversity and function play a major role in disease resistance. This means that observations made at the individual bee level cannot be simply extrapolated to infer similar effects at colony level. Although individual laboratory larval assays have clearly demonstrated the antagonistic effects of hbs-LAB on P. larvae infection, the results from the experiments presented here indicate that direct conversion of such practice to colony-level administration of live hbs-LAB is not effective.


Asunto(s)
Abejas/microbiología , Lactobacillales/química , Microbiota , Paenibacillus larvae/fisiología , Esporas Bacterianas/fisiología , Alimentación Animal/análisis , Animales , Dieta , Larva/microbiología
10.
J Ecol ; 107(4): 1704-1719, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31341333

RESUMEN

The use of plant traits to predict ecosystem functions has been gaining growing attention. Above-ground plant traits, such as leaf nitrogen (N) content and specific leaf area (SLA), have been shown to strongly relate to ecosystem productivity, respiration and nutrient cycling. Furthermore, increasing plant functional trait diversity has been suggested as a possible mechanism to increase ecosystem carbon (C) storage. However, it is uncertain whether below-ground plant traits can be predicted by above-ground traits, and if both above- and below-ground traits can be used to predict soil properties and ecosystem-level functions.Here, we used two adjacent field experiments in temperate grassland to investigate if above- and below-ground plant traits are related, and whether relationships between plant traits, soil properties and ecosystem C fluxes (i.e. ecosystem respiration and net ecosystem exchange) measured in potted monocultures could be detected in mixed field communities.We found that certain shoot traits (e.g. shoot N and C, and leaf dry matter content) were related to root traits (e.g. root N, root C:N and root dry matter content) in monocultures, but such relationships were either weak or not detected in mixed communities. Some relationships between plant traits (i.e. shoot N, root N and/or shoot C:N) and soil properties (i.e. inorganic N availability and microbial community structure) were similar in monocultures and mixed communities, but they were more strongly linked to shoot traits in monocultures and root traits in mixed communities. Structural equation modelling showed that above- and below-ground traits and soil properties improved predictions of ecosystem C fluxes in monocultures, but not in mixed communities on the basis of community-weighted mean traits. Synthesis. Our results from a single grassland habitat detected relationships in monocultures between above- and below-ground plant traits, and between plant traits, soil properties and ecosystem C fluxes. However, these relationships were generally weaker or different in mixed communities. Our results demonstrate that while plant traits can be used to predict certain soil properties and ecosystem functions in monocultures, they are less effective for predicting how changes in plant species composition influence ecosystem functions in mixed communities.

11.
Appl Environ Microbiol ; 85(13)2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31003985

RESUMEN

Paenibacillus larvae, the causative agent of American foulbrood (AFB), is the primary bacterial pathogen affecting honeybees and beekeeping. The main methods for controlling AFB are incineration of diseased colonies or prophylactic antibiotic treatment (e.g., with tylosin), neither of which is fully satisfactory. The search for superior means for controlling AFB has led to an increased interest in the natural relationships between the honeybee-pathogenic and mutualistic microorganisms and, in particular, the antagonistic effects of honeybee-specific lactic acid bacteria (hbs-LAB) against P. larvae These effects have been demonstrated only on individual larvae in controlled laboratory bioassays. Here we investigated whether supplemental administration of hbs-LAB had a similar beneficial effect on P. larvae infection at colony level. We compared experimentally AFB-infected colonies treated with hbs-LAB supplements to untreated and tylosin-treated colonies and recorded AFB symptoms, bacterial spore levels, and two measures of colony health. To account for the complexity of a bee colony, we focused on (Bayesian) probabilities and magnitudes of effect sizes. Tylosin reduced AFB disease symptoms but also had a negative effect on colony strength. The tylosin treatment did not, however, affect P. larvae spore levels and might therefore "mask" the potential for disease. hbs-LAB tended to reduce brood size in the short term but was unlikely to affect AFB symptoms or spores. These results do not contradict demonstrated antagonistic effects of hbs-LAB against P. larvae at the individual bee level but rather suggest that supplementary administration of hbs-LAB may not be the most effective way to harness these beneficial effects at the colony level.IMPORTANCE The previously demonstrated antagonistic effects of honeybee-derived bacterial microbiota on the infectivity and pathogenicity of P. larvae in laboratory bioassays have identified a possible new approach to AFB control. However, honeybee colonies are complex superorganisms where social immune defenses play a major role in resistance against disease at the colony level. Few studies have investigated the effect of beneficial microorganisms on bee diseases at the colony level. Effects observed at the individual bee level do not necessarily translate into similar effects at the colony level. This study partially fills this gap by showing that, unlike at the individual level, hbs-LAB supplements did not affect AFB symptoms at the colony level. The inference is that the mechanisms regulating the honeybee microbial dynamics within a colony are too strong to manipulate positively through supplemental feeding of live hbs-LAB and that new potential remedies identified through laboratory research have to be tested thoroughly in situ, in colonies.


Asunto(s)
Antibiosis , Abejas/microbiología , Lactobacillales/fisiología , Paenibacillus larvae/fisiología , Animales , Antibacterianos/farmacología , Abejas/efectos de los fármacos , Abejas/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Larva/microbiología , Paenibacillus larvae/efectos de los fármacos , Especificidad de la Especie , Tilosina/farmacología
12.
Sci Rep ; 9(1): 6221, 2019 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-30996279

RESUMEN

The ectoparasitic mite, Varroa destructor, is unarguably the leading cause of honeybee (Apis mellifera) mortality worldwide through its role as a vector for lethal viruses, in particular, strains of the Deformed wing virus (DWV) and Acute bee paralysis virus (ABPV) complexes. This multi-level system of host-parasite-pathogen interactions makes it difficult to investigate effects of either the mite or the virus on natural host survival. The aim of this study was to remove confounding effects of varroa to examine the role of virus susceptibility in the enhanced survival of a naturally adapted Swedish mite-resistant (MR) honeybee population, relative to mite-susceptible (MS) honeybees. Caged adult bees and laboratory reared larvae, from varroa-free colonies, were inoculated with DWV and ABPV in a series of feeding infection experiments, while control groups received virus-free food. Virus infections were monitored using RT-qPCR assays in individuals sampled over a time course. In both adults and larvae the DWV and ABPV infection dynamics were nearly identical between MR and MS groups, but MS adults suffered significantly higher mortality than MR adults. Results suggest virus tolerance, rather than reduced susceptibility or virus resistance, is an important component of the natural survival of this honeybee population.


Asunto(s)
Abejas/virología , Dicistroviridae/inmunología , Interacciones Huésped-Parásitos/inmunología , Tolerancia Inmunológica , Virus ARN/inmunología , Varroidae/virología , Virosis/inmunología , Adaptación Fisiológica/inmunología , Animales , ADN Viral/genética , Vectores de Enfermedades , Alimentos/virología , Larva/virología , Parásitos/virología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Suecia , Virosis/virología
13.
Oecologia ; 184(3): 685-699, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28669001

RESUMEN

Evidence of the indirect effects of increasing global deer populations on other trophic levels is increasing. However, it remains unknown if excluding deer alters ecosystem functional relationships. We investigated how sika deer exclosure after 18 years changed soil conditions, the understory plant community, the traits of a dominant understory plant (Sasa palmata), herbivory by three insect-feeding guilds, and the functional relationships between these properties. Deer absence decreased understory plant diversity, but increased soil organic matter and ammonium concentrations. When deer were absent, S. palmata plants grew taller, with more, larger, and tougher leaves with higher polyphenol concentrations. Deer absence led to higher leaf area consumed by all insect guilds, but lower insect herbivory per plant due to increased resource abundance (i.e., a dilution effect). This indicates that deer presence strengthened insect herbivory per plant, while in deer absence plants compensated losses with growth. Because plant defenses increased in the absence of deer, higher insect abundances in deer absence may have outweighed lower consumption rates. A path model revealed that the functional relationships between the measured properties were similar between deer absence versus presence. Taken together, deer altered the abiotic and biotic environment, thereby changing insect herbivory, which might impact upon nutrient cycling and primary productivity. These results provide evidence that deer can alter interactions between trophic levels, but that functional relationships between certain ecosystem components may remain constant. These findings highlight the need to consider how increasing global deer populations can have cascade effects that might alter ecosystem dynamics.


Asunto(s)
Ciervos , Herbivoria , Insectos , Animales , Plantas , Dinámica Poblacional , Suelo
14.
Ecol Evol ; 7(7): 2327-2339, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28405296

RESUMEN

Predators not only consume prey but exert nonconsumptive effects in form of scaring, consequently disturbing feeding or reproduction. However, how alternative food sources and hunting mode interactively affect consumptive and nonconsumptive effects with implications for prey fitness have not been addressed, impending functional understanding of such tritrophic interactions. With a herbivorous beetle, two omnivorous predatory bugs (plant sap as alternative food, contrasting hunting modes), and four willow genotypes (contrasting suitability for beetle/omnivore), we investigated direct and indirect effects of plant quality on the beetles key reproductive traits (oviposition rate, clutch size). Using combinations of either or both omnivores on different plant genotypes, we calculated the contribution of consumptive (eggs predated) and nonconsumptive (fewer eggs laid) effect on beetle fitness, including a prey density-independent measure (c:nc ratio). We found that larger clutches increase egg survival in presence of the omnivore not immediately consuming all eggs. However, rather than lowering mean, the beetles generally responded with a frequency shift toward smaller clutches. However, female beetles decreased mean and changed clutch size frequency with decreasing plant quality, therefore reducing intraspecific exploitative competition among larvae. More importantly, variation in host plant quality (to omnivore) led to nonconsumptive effects between one-third and twice as strong as the consumptive effects. Increased egg consumption on plants less suitable to the omnivore may therefore be accompanied by less searching and disturbing the beetle, representing a "cost" to the indirect plant defense in the form of a lower nonconsumptive effect. Many predators are omnivores and altering c:nc ratios (with egg retention as the most direct link to prey fitness) via plant quality and hunting behavior should be fundamental to advance ecological theory and applications. Furthermore, exploring modulation of fitness traits by bottom-up and top-down effects will help to explain how and why species aggregate.

15.
Ecology ; 96(4): 908-14, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26230012

RESUMEN

Gregarious organisms need to handle the trade-off between increasing food competition and the positive effects of group living, and this is particularly important for ovipositing females. We hypothesized that insect females consider how many conspecifics previously visited a host plant. In a no-choice assay, we show that the gregarious blue willow leaf beetle (Phratora vulgatissima) laid the most eggs and the largest clutches on plants where a sequence of few individual females was released, compared to plants where one or many different females were repeatedly released. Therefore, this species is more sensitive to the indirectly perceived number of conspecifics than the directly perceived number of eggs on a plant. We further hypothesized that females adjust their own intra-plant egg clutch distribution to that of conspecifics and discovered a new behavioral component, i.e., the modulation of distances between clutches. Females adjusted these distances in ways indicating the use of spatial memory, because the largest distance increases were observed on plants with their own clutches, compared to plants with clutches from conspecifics. However, adjustment of aggregation level and distance between clutches occurred only on a suitable, and not on an unsuitable, Salix genotype. We conclude that both behaviors should reduce competition between sibling and non-sibling larvae.


Asunto(s)
Conducta Animal/fisiología , Escarabajos/fisiología , Óvulo/fisiología , Memoria Espacial/fisiología , Animales , Tamaño de la Nidada , Femenino , Oviposición/fisiología , Hojas de la Planta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...