Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Animal ; 18(9): 101268, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39153439

RESUMEN

The residual feed intake (RFI) model has recently gained popularity for ranking dairy cows for feed efficiency. The RFI model ranks the cows based on their expected feed intake compared to the observed feed intake, where a negative phenotype (eating less than expected) is favourable. Yet interpreting the biological implications of the regression coefficients derived from RFI models has proven challenging. In addition, multitrait modelling of RFI has been proposed as an alternative to the least square RFI in nutrition and genetic studies. To solve the challenge with the biological interpretation of RFI regression coefficients and suggest ways to improve the modelling of RFI, an interdisciplinary effort was required between nutritionists and geneticists. Therefore, this paper aimed to explore the challenges with the traditional least square RFI model and propose solutions to improve the modelling of RFI. In the traditional least square RFI model, one set of fixed effects is used to solve systematic effects (e.g., seasonal effects and age at calving) for traits with different means and variances. Thereby, measurement and model fitting errors can accumulate in the phenotype, resulting in undesirable effects. A multivariate RFI model will likely reduce this problem, as trait-specific fixed effects are used. In addition, regression coefficients for DM intake on milk energy tend to have more biologically meaningful estimates in multitrait RFI models, which indicates a confounding effect between the fixed effects and regression coefficients in the least square RFI model. However, defining precise expectations for regression coefficients from RFI models or sourcing for accurate feed norm coefficients seems difficult, especially if the coefficients are applied to a wide cattle population with varying diets or management systems, for example. To improve multitrait modelling of RFI, we suggest improving the modelling of changes in energy status. Furthermore, a novel method to derive the energy density of the diet and individual digestive efficiency is proposed. Digestive efficiency is defined as the part of the efficiency associated with digestive processes, which primarily reflects the conversion from gross energy to metabolisable energy. We show the model was insensitive to prior values of energy density in feed and that there was individual variation in digestive efficiency. The proposed method needs further development and validation. In summary, using multitrait RFI can improve the accuracy of the ranking of dairy cows' feed efficiency, consequently improving economic and environmental sustainability on dairy farms.


Asunto(s)
Industria Lechera , Ingestión de Alimentos , Animales , Bovinos/genética , Bovinos/fisiología , Femenino , Industria Lechera/métodos , Fenómenos Fisiológicos Nutricionales de los Animales , Alimentación Animal/análisis , Modelos Biológicos , Fenotipo , Análisis de los Mínimos Cuadrados
2.
J Dairy Sci ; 107(3): 1523-1534, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37690722

RESUMEN

Feed efficiency has become an increasingly important research topic in recent years. As feed costs rise and the environmental impacts of agriculture become more apparent, improving the efficiency with which dairy cows convert feed to milk is increasingly important. However, feed intake is expensive to measure accurately on large populations, making the inclusion of this trait in breeding programs difficult. Understanding how the genetic parameters of feed efficiency and traits related to feed efficiency vary throughout the lactation period is valuable to gain understanding into the genetic nature of feed efficiency. This study used 121,226 dry matter intake (DMI) records, 120,500 energy-corrected milk (ECM) records, and 98,975 metabolic body weight (MBW) records, collected on 7,440 first-lactation Holstein cows from 6 countries (Canada, Denmark, Germany, Spain, Switzerland, and the United States), from January 2003 to February 2022. Genetic parameters were estimated using a multiple-trait random regression model with a fourth-order Legendre polynomial for all traits. Weekly phenotypes for DMI were re-parameterized using linear regressions of DMI on ECM and MBW, creating a measure of feed efficiency that was genetically corrected for ECM and MBW, referred to as genomic residual feed intake (gRFI). Heritability (SE) estimates varied from 0.15 (0.03) to 0.29 (0.02) for DMI, 0.24 (0.01) to 0.29 (0.03) for ECM, 0.55 (0.03) to 0.83 (0.05) for MBW, and 0.12 (0.03) to 0.22 (0.06) for gRFI. In general, heritability estimates were lower in the first stage of lactation compared with the later stages of lactation. Additive genetic correlations between weeks of lactation varied, with stronger correlations between weeks of lactation that were close together. The results of this study contribute to a better understanding of the change in genetic parameters across the first lactation, providing insight into potential selection strategies to include feed efficiency in breeding programs.


Asunto(s)
Lactancia , Leche , Animales , Femenino , Bovinos/genética , Lactancia/genética , Ingestión de Alimentos/genética , Agricultura , Fenotipo
3.
J Dairy Sci ; 106(12): 9078-9094, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37678762

RESUMEN

Residual feed intake is viewed as an important trait in breeding programs that could be used to enhance genetic progress in feed efficiency. In particular, improving feed efficiency could improve both economic and environmental sustainability in the dairy cattle industry. However, data remain sparse, limiting the development of reliable genomic evaluations across lactation and parity for residual feed intake. Here, we estimated novel genetic parameters for genetic residual feed intake (gRFI) across the first, second, and third parity, using a random regression model. Research data on the measured feed intake, milk production, and body weight of 7,379 cows (271,080 records) from 6 countries in 2 continents were shared through the Horizon 2020 project Genomic Management Tools to Optimise Resilience and Efficiency, and the Resilient Dairy Genome Project. The countries included Canada (1,053 cows with 47,130 weekly records), Denmark (1,045 cows with 72,760 weekly records), France (329 cows with 16,888 weekly records), Germany (938 cows with 32,614 weekly records), the Netherlands (2,051 cows with 57,830 weekly records), and United States (1,963 cows with 43,858 weekly records). Each trait had variance components estimated from first to third parity, using a random regression model across countries. Genetic residual feed intake was found to be heritable in all 3 parities, with first parity being predominant (range: 22-34%). Genetic residual feed intake was highly correlated across parities for mid- to late lactation; however, genetic correlation across parities was lower during early lactation, especially when comparing first and third parity. We estimated a genetic correlation of 0.77 ± 0.37 between North America and Europe for dry matter intake at first parity. Published literature on genetic correlations between high input countries/continents for dry matter intake support a high genetic correlation for dry matter intake. In conclusion, our results demonstrate the feasibility of estimating variance components for gRFI across parities, and the value of sharing data on scarce phenotypes across countries. These results can potentially be implemented in genetic evaluations for gRFI in dairy cattle.


Asunto(s)
Lactancia , Leche , Embarazo , Femenino , Bovinos/genética , Animales , Paridad , Factores de Tiempo , Lactancia/genética , Ingestión de Alimentos/genética , Europa (Continente) , América del Norte , Alimentación Animal/análisis
4.
J Dairy Sci ; 105(12): 9799-9809, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36241442

RESUMEN

Methane emissions in ruminant livestock has become a hot topic, given the pressure to reduce greenhouse gas emissions drastically in the European Union over the next 10 to 30 yr. During the 2021 United Nations Climate Change conference, countries also made collective commitments to curb methane emissions by 2050. Genetic selection for low-methane-emitting animals, particularly dairy cows, is one possible strategy for mitigation. However, it is essential to understand how methane emissions in lactating animals vary along lactation and across lactations. This understanding is useful when making decisions for future phenotyping strategies, such as the frequency and duration of phenotyping within and across lactations. Therefore, the objectives of this study were to estimate (1) genetic parameters for 2 methane traits: methane concentration (MeC) and methane production (MeP) at 2 parity levels in Danish Holstein cows across the entire lactation using random regression models; (2) genetic correlations within and between methane traits across the entire lactation; and (3) genetic correlations between the methane traits and economically important traits throughout first lactation. Methane concentration (n = 19,639) records of 575 Danish Holstein cows from a research farm measured between 2013 and 2020 were available. Subsequently, CH4 production in grams/day (MeP; n = 13,866) was calculated; MeP and MeC for first and second lactation (L1 and L2) were analyzed as separate traits: MeC_L1, MeP_L1, MeC_L2, and MeP_L2. Heritabilities, variance components, and genetic correlations within and between the 4 CH4 traits were estimated using random regression models with Legendre polynomials. The additive genetic and permanent environmental effects were modeled using second-order Legendre polynomial for lactation weeks. Estimated heritabilities for MeP_L1 ranged between 0.11 and 0.49, for MeC_L1 between 0.10 and 0.28, for MeP_L2 between 0.14 and 0.36, and for MeC_L2 between 0.13 and 0.29. In general, heritability estimates of MeC traits were lower and more stable throughout lactation and were similar between lactations compared with MeP. Genetic correlations (within trait) at different lactation weeks were generally highly positive (0.7) for most of the first lactation, except for the correlation of early lactation (<10 wk) with late lactation (>40 wk) where the correlation was the lowest (<0.5). Genetic correlations between methane traits were moderate to highly correlated during early and mid lactation. Finally, MeP_L1 has stronger genetic correlations with energy-corrected milk and dry matter intake compared with MeC_L1. In conclusion, both traits are different along (and across) lactation(s) and they correlated differently with production, maintenance, and intake traits, which is important to consider when including one of them in a future breeding objective.


Asunto(s)
Lactancia , Metano , Embarazo , Femenino , Bovinos/genética , Animales , Lactancia/genética , Leche , Paridad , Fenotipo , Dinamarca
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA