Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Science ; 358(6360)2017 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-29026014

RESUMEN

Spaceborne observations of carbon dioxide (CO2) from the Orbiting Carbon Observatory-2 are used to characterize the response of tropical atmospheric CO2 concentrations to the strong El Niño event of 2015-2016. Although correlations between the growth rate of atmospheric CO2 concentrations and the El Niño-Southern Oscillation are well known, the magnitude of the correlation and the timing of the responses of oceanic and terrestrial carbon cycle remain poorly constrained in space and time. We used space-based CO2 observations to confirm that the tropical Pacific Ocean does play an early and important role in modulating the changes in atmospheric CO2 concentrations during El Niño events-a phenomenon inferred but not previously observed because of insufficient high-density, broad-scale CO2 observations over the tropics.

2.
Nature ; 513(7517): 219-23, 2014 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-25209800

RESUMEN

The hydroxyl radical (OH) is a key oxidant involved in the removal of air pollutants and greenhouse gases from the atmosphere. The ratio of Northern Hemispheric to Southern Hemispheric (NH/SH) OH concentration is important for our understanding of emission estimates of atmospheric species such as nitrogen oxides and methane. It remains poorly constrained, however, with a range of estimates from 0.85 to 1.4 (refs 4, 7-10). Here we determine the NH/SH ratio of OH with the help of methyl chloroform data (a proxy for OH concentrations) and an atmospheric transport model that accurately describes interhemispheric transport and modelled emissions. We find that for the years 2004-2011 the model predicts an annual mean NH-SH gradient of methyl chloroform that is a tight linear function of the modelled NH/SH ratio in annual mean OH. We estimate a NH/SH OH ratio of 0.97 ± 0.12 during this time period by optimizing global total emissions and mean OH abundance to fit methyl chloroform data from two surface-measurement networks and aircraft campaigns. Our findings suggest that top-down emission estimates of reactive species such as nitrogen oxides in key emitting countries in the NH that are based on a NH/SH OH ratio larger than 1 may be overestimated.


Asunto(s)
Atmósfera/química , Radical Hidroxilo/química , Modelos Teóricos , Contaminantes Atmosféricos/química , Cloroformo/química , Simulación por Computador , Óxidos de Nitrógeno/química
3.
Science ; 341(6150): 1085-9, 2013 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-23929948

RESUMEN

Seasonal variations of atmospheric carbon dioxide (CO2) in the Northern Hemisphere have increased since the 1950s, but sparse observations have prevented a clear assessment of the patterns of long-term change and the underlying mechanisms. We compare recent aircraft-based observations of CO2 above the North Pacific and Arctic Oceans to earlier data from 1958 to 1961 and find that the seasonal amplitude at altitudes of 3 to 6 km increased by 50% for 45° to 90°N but by less than 25% for 10° to 45°N. An increase of 30 to 60% in the seasonal exchange of CO2 by northern extratropical land ecosystems, focused on boreal forests, is implicated, substantially more than simulated by current land ecosystem models. The observations appear to signal large ecological changes in northern forests and a major shift in the global carbon cycle.


Asunto(s)
Atmósfera/química , Ciclo del Carbono , Dióxido de Carbono/química , Ecosistema , Árboles , Regiones Árticas , Océanos y Mares , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...