Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
1.
Microbiol Resour Announc ; 13(8): e0038524, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-38967489

RESUMEN

Turicibacter is a common mammalian gut commensal; however, very few genomes have been sequenced, and little is understood regarding its importance for host health. Here, we add a complete Turicibacter sp. genome isolated from a spore-forming community in mice.

2.
Microbiol Resour Announc ; 13(7): e0035124, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38899922

RESUMEN

Clostridia are common mammalian gut commensals with emerging roles in human health. Here, we describe 10 Clostridia genomes from a consortium of spore forming bacteria, shown to protect mice from metabolic syndrome. These genomes will provide valuable insight on the beneficial role of spore forming bacteria in the gut.

3.
Nat Commun ; 15(1): 2769, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38553486

RESUMEN

Multiple neurological disorders are associated with gastrointestinal (GI) symptoms, including autism spectrum disorder (ASD). However, it is unclear whether GI distress itself can modify aspects of behavior. Here, we show that mice that experience repeated colitis have impaired active social engagement, as measured by interactions with a foreign mouse, even though signs of colitis were no longer present. We then tested the hypothesis that individuals with ASD harbor a microbiota that might differentially influence GI health by performing microbiota transplantation studies into male germfree animals, followed by induction of colitis. Animals that harbor a microbiota from ASD individuals have worsened gut phenotypes when compared to animals colonized with microbiotas from familial neurotypical (NT) controls. We identify the enrichment of Blautia species in all familial NT controls and observe an association between elevated abundance of Bacteroides uniformis and reductions in intestinal injury. Oral treatment with either of these microbes reduces colon injury in mice. Finally, provision of a Blautia isolate from a NT control ameliorates gut injury-associated active social engagement in mice. Collectively, our data demonstrate that past intestinal distress is associated with changes in active social behavior in mice that can be ameliorated by supplementation of members of the human microbiota.


Asunto(s)
Trastorno del Espectro Autista , Colitis , Enfermedades Gastrointestinales , Microbiota , Humanos , Masculino , Ratones , Animales , Trastorno del Espectro Autista/terapia , Participación Social , Colitis/terapia , Suplementos Dietéticos
4.
J Biol Chem ; 299(7): 104877, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37269954

RESUMEN

Abcb10 is a mitochondrial membrane protein involved in hemoglobinization of red cells. Abcb10 topology and ATPase domain localization suggest it exports a substrate, likely biliverdin, out of mitochondria that is necessary for hemoglobinization. In this study, we generated Abcb10 deletion cell lines in both mouse murine erythroleukemia and human erythroid precursor human myelogenous leukemia (K562) cells to better understand the consequences of Abcb10 loss. Loss of Abcb10 resulted in an inability to hemoglobinize upon differentiation in both K562 and mouse murine erythroleukemia cells with reduced heme and intermediate porphyrins and decreased levels of aminolevulinic acid synthase 2 activity. Metabolomic and transcriptional analyses revealed that Abcb10 loss gave rise to decreased cellular arginine levels, increased transcripts for cationic and neutral amino acid transporters with reduced levels of the citrulline to arginine converting enzymes argininosuccinate synthetase and argininosuccinate lyase. The reduced arginine levels in Abcb10-null cells gave rise to decreased proliferative capacity. Arginine supplementation improved both Abcb10-null proliferation and hemoglobinization upon differentiation. Abcb10-null cells showed increased phosphorylation of eukaryotic translation initiation factor 2 subunit alpha, increased expression of nutrient sensing transcription factor ATF4 and downstream targets DNA damage inducible transcript 3 (Chop), ChaC glutathione specific gamma-glutamylcyclotransferase 1 (Chac1), and arginyl-tRNA synthetase 1 (Rars). These results suggest that when the Abcb10 substrate is trapped in the mitochondria, the nutrient sensing machinery is turned on remodeling transcription to block protein synthesis necessary for proliferation and hemoglobin biosynthesis in erythroid models.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Animales , Humanos , Ratones , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Arginina , Transportadoras de Casetes de Unión a ATP/metabolismo , Hemoglobinas/metabolismo , Células K562 , Proteínas Mitocondriales/metabolismo
6.
bioRxiv ; 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36993296

RESUMEN

Regulation of the microbiota is critical to intestinal health yet the mechanisms employed by innate immunity remain unclear. Here we show that mice deficient in the C-Type-lectin receptor, Clec12a developed severe colitis, which was dependent on the microbiota. Fecal-microbiota-transplantation (FMT) studies into germfree mice revealed a colitogenic microbiota formed within Clec12a -/- mice that was marked by expansion of the gram-positive organism, Faecalibaculum rodentium . Treatment with F. rodentium was sufficient to worsen colitis in wild-type mice. Macrophages within the gut express the highest levels of Clec12a. Cytokine and sequencing analysis in Clec12a -/- macrophages revealed heighten inflammation but marked reduction in genes associated with phagocytosis. Indeed, Clec12a -/- macrophages are impaired in their ability to uptake F. rodentium. Purified Clec12a had higher binding to gram-positive organisms such as F. rodentium . Thus, our data identifies Clec12a as an innate immune surveillance mechanism to control expansion of potentially harmful commensals without overt inflammation.

7.
Am J Cancer Res ; 12(10): 4789-4801, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36381318

RESUMEN

Associations of energy balance components, including physical activity and obesity, with colorectal cancer risk and mortality are well established. However, the gut microbiome has not been investigated as underlying mechanism. We investigated associations of physical activity, BMI, and combinations of physical activity/BMI with gut microbiome diversity and differential abundances among colorectal cancer patients. N=179 patients with colorectal cancer (stages I-IV) were included in the study. Pre-surgery stool samples were used to perform 16S rRNA gene sequencing (Illumina). Physical activity (MET hrs/wk) during the year before diagnosis was assessed by questionnaire and participants were classified as being active vs. inactive based on guidelines. BMI at baseline was abstracted from medical records. Patients were classified into four combinations of physical activity levels/BMI. Lower gut microbial diversity was observed among 'inactive' vs. 'active' patients (Shannon: P=0.01, Simpson: P=0.03), 'obese' vs. 'normal weight' patients (Shannon, Simpson, and Observed species: P=0.02, respectively), and 'overweight/obese/inactive' vs. 'normal weight/active' patients (Shannon: P=0.02, Observed species: P=0.04). Results differed by sex and tumor site. Two phyla and 12 genera (Actinobacteria and Fusobacteria, Adlercreutzia, Anaerococcus, Clostridium, Eubacterium, Mogibacteriaceae, Olsenella, Peptinophilus, Pyramidobacter, RFN20, Ruminococcus, Succinivibrio, Succiniclasticum) were differentially abundant across physical activity and BMI groups. This is the first evidence for associations of physical activity with gut microbiome diversity and abundances, directly among colorectal cancer patients. Our results indicate that physical activity may offset gut microbiome dysbiosis due to obesity. Alterations in gut microbiota may contribute mechanistically to the energy balance-colorectal cancer link and impact clinical outcomes.

8.
JCI Insight ; 7(19)2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36214220

RESUMEN

Intercellular communication is critical for homeostasis in mammalian systems, including the gastrointestinal (GI) tract. Exosomes are nanoscale lipid extracellular vesicles that mediate communication between many cell types. Notably, the roles of immune cell exosomes in regulating GI homeostasis and inflammation are largely uncharacterized. By generating mouse strains deficient in cell-specific exosome production, we demonstrate deletion of the small GTPase Rab27A in CD11c+ cells exacerbated murine colitis, which was reversible through administration of DC-derived exosomes. Profiling RNAs within colon exosomes revealed a distinct subset of miRNAs carried by colon- and DC-derived exosomes. Among antiinflammatory exosomal miRNAs, miR-146a was transferred from gut immune cells to myeloid and T cells through a Rab27-dependent mechanism, targeting Traf6, IRAK-1, and NLRP3 in macrophages. Further, we have identified a potentially novel mode of exosome-mediated DC and macrophage crosstalk that is capable of skewing gut macrophages toward an antiinflammatory phenotype. Assessing clinical samples, RAB27A, select miRNAs, and RNA-binding proteins that load exosomal miRNAs were dysregulated in ulcerative colitis patient samples, consistent with our preclinical mouse model findings. Together, our work reveals an exosome-mediated regulatory mechanism underlying gut inflammation and paves the way for potential use of miRNA-containing exosomes as a novel therapeutic for inflammatory bowel disease.


Asunto(s)
Antígenos CD11 , Colitis , Exosomas , Inflamación , Células Mieloides , Animales , Antígenos CD11/genética , Antígenos CD11/inmunología , Colitis/genética , Colitis/inmunología , Exosomas/genética , Exosomas/inmunología , Inflamación/genética , Inflamación/inmunología , Enfermedades Inflamatorias del Intestino/inmunología , Intestinos/inmunología , Lípidos , Mamíferos/genética , Mamíferos/inmunología , Ratones , MicroARNs/inmunología , Proteínas de Unión al GTP Monoméricas/inmunología , Células Mieloides/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Factor 6 Asociado a Receptor de TNF/inmunología
9.
Artículo en Inglés | MEDLINE | ID: mdl-36078242

RESUMEN

Many novel tobacco products have been developed in recent years. Although many may emit lower levels of several toxicants, their risk in the long term remains unclear. We previously published a method for the exposure assessment of mixtures that can be used to compare the changes in cumulative exposure to carcinogens among tobacco products. While further developing this method by including more carcinogens or to explore its application to non-cancer endpoints, we encountered a lack of data that are required for better-substantiated conclusions regarding differences in exposure between products. In this special communication, we argue the case for more data on adverse health effects, as well as more data on the composition of the emissions from tobacco products. Such information can be used to identify significant changes in relevance to health using the cumulative exposure method with different products and to substantiate regulatory decisions.


Asunto(s)
Nicotiana , Productos de Tabaco , Carcinógenos/toxicidad , Nicotiana/toxicidad , Productos de Tabaco/toxicidad
11.
Front Immunol ; 13: 1046574, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36733389

RESUMEN

Introduction: Neutrophil extracellular traps (NETs) clear pathogens but may contribute Q8 pathogenically to host inflammatory tissue damage during sepsis. Innovative therapeutic agents targeting NET formation and their potentially harmful collateral effects remain understudied. Methods: We investigated a novel therapeutic agent, neonatal NET-Inhibitory Factor (nNIF), in a mouse model of experimental sepsis - cecal ligation and puncture (CLP). We administered 2 doses of nNIF (1 mg/ kg) or its scrambled peptide control intravenously 4 and 10 hours after CLP treatment and assessed survival, peritoneal fluid and plasma NET formation using the MPO-DNA ELISA, aerobic bacterial colony forming units (CFU) using serial dilution and culture, peritoneal fluid and stool microbiomes using 16S rRNA gene sequencing, and inflammatory cytokine levels using a multiplexed cytokine array. Meropenem (25 mg/kg) treatment served as a clinically relevant treatment for infection. Results: We observed increased 6-day survival rates in nNIF (73%) and meropenem (80%) treated mice compared to controls (0%). nNIF decreased NET formation compared to controls, while meropenem did not impact NET formation. nNIF treatment led to increased peritoneal fluid and plasma bacterial CFUs consistent with loss of NET-mediated extracellular microbial killing, while nNIF treatment alone did not alter the peritoneal fluid and stool microbiomes compared to vehicle-treated CLP mice. nNIF treatment also decreased peritoneal TNF-a inflammatory cytokine levels compared to scrambled peptide control. Furthermore, adjunctive nNIF increased survival in a model of sub-optimal meropenem treatment (90% v 40%) in CLP-treated mice. Discussion: Thus, our data demonstrate that nNIF inhibits NET formation in a translationally relevant mouse model of sepsis, improves survival when given as monotherapy or as an adjuvant with antibiotics, and may play an important protective role in sepsis.


Asunto(s)
Trampas Extracelulares , Sepsis , Ratones , Animales , Neutrófilos/patología , Meropenem/farmacología , ARN Ribosómico 16S/genética , Sepsis/patología , Citocinas/farmacología , Proteínas Tirosina Quinasas Receptoras , Punciones
12.
Symbiosis ; 87(1): 45-58, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-37915425

RESUMEN

Fungi are often overlooked in microbiome research and, as a result, little is known about the mammalian mycobiome. Although frequently detected in vertebrate guts and known to contribute to digestion in some herbivores, whether these eukaryotes are a persistent part of the mammalian gut microbiome remains contentious. To address this question, we sampled fungi from wild woodrats (Neotoma spp.) collected from 25 populations across the southwestern United States. For each animal, we collected a fecal sample in the wild, and then re-sampled the same individual after a month in captivity on a controlled diet. We characterized and quantified fungi using three techniques: ITS metabarcoding, shotgun metagenomics and qPCR. Wild individuals contained diverse fungal assemblages dominated by plant pathogens, widespread molds, and coprophilous taxa primarily in Ascomycota and Mucoromycota. Fungal abundance, diversity and composition differed between individuals, and was primarily influenced by animal geographic origin. Fungal abundance and diversity significantly declined in captivity, indicating that most fungi in wild hosts came from diet and environmental exposure. While this suggests that these mammals lack a persistent gut mycobiome, natural fungal exposure may still impact fungal dispersal and animal health.

13.
Cell Rep ; 37(5): 109916, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34731608

RESUMEN

Intestinal epithelial cells (IECs) have long been understood to express high levels of major histocompatibility complex class II (MHC class II) molecules but are not considered canonical antigen-presenting cells, and the impact of IEC-MHC class II signaling on gut homeostasis remains enigmatic. As IECs serve as the primary barrier between underlying host immune cells, we reasoned that IEC-intrinsic antigen presentation may play a role in responses toward the microbiota. Mice with an IEC-intrinsic deletion of MHC class II (IECΔMHC class II) are healthy but have fewer microbial-bound IgA, regulatory T cells (Tregs), and immune repertoire selection. This was associated with increased interindividual microbiota variation and altered proportions of two taxa in the ileum where MHC class II on IECs is highest. Intestinal mononuclear phagocytes (MNPs) have similar MHC class II transcription but less surface MHC class II and are capable of acquiring MHC class II from IECs. Thus, epithelial-myeloid interactions mediate development of adaptive responses to microbial antigens within the gastrointestinal tract.


Asunto(s)
Inmunidad Adaptativa , Bacterias/inmunología , Células Epiteliales/inmunología , Microbioma Gastrointestinal , Antígenos de Histocompatibilidad Clase II/inmunología , Íleon/microbiología , Inmunidad Mucosa , Sistema Mononuclear Fagocítico/inmunología , Células Mieloides/inmunología , Animales , Antígenos Bacterianos/inmunología , Antígenos Bacterianos/metabolismo , Bacterias/crecimiento & desarrollo , Bacterias/metabolismo , Línea Celular , Colitis/inmunología , Colitis/metabolismo , Colitis/microbiología , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Femenino , Antígenos de Histocompatibilidad Clase II/metabolismo , Interacciones Huésped-Patógeno , Íleon/inmunología , Íleon/metabolismo , Inmunoglobulina A/inmunología , Inmunoglobulina A/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Sistema Mononuclear Fagocítico/metabolismo , Sistema Mononuclear Fagocítico/microbiología , Células Mieloides/metabolismo , Células Mieloides/microbiología , Transducción de Señal , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo
14.
Nature ; 596(7870): 114-118, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34262174

RESUMEN

Pathogenic fungi reside in the intestinal microbiota but rarely cause disease. Little is known about the interactions between fungi and the immune system that promote commensalism. Here we investigate the role of adaptive immunity in promoting mutual interactions between fungi and host. We find that potentially pathogenic Candida species induce and are targeted by intestinal immunoglobulin A (IgA) responses. Focused studies on Candida albicans reveal that the pathogenic hyphal morphotype, which is specialized for adhesion and invasion, is preferentially targeted and suppressed by intestinal IgA responses. IgA from mice and humans directly targets hyphal-enriched cell-surface adhesins. Although typically required for pathogenesis, C. albicans hyphae are less fit for gut colonization1,2 and we show that immune selection against hyphae improves the competitive fitness of C. albicans. C. albicans exacerbates intestinal colitis3 and we demonstrate that hyphae and an IgA-targeted adhesin exacerbate intestinal damage. Finally, using a clinically relevant vaccine to induce an adhesin-specific immune response protects mice from C. albicans-associated damage during colitis. Together, our findings show that adaptive immunity suppresses harmful fungal effectors, with benefits to both C. albicans and its host. Thus, IgA uniquely uncouples colonization from pathogenesis in commensal fungi to promote homeostasis.


Asunto(s)
Inmunidad Adaptativa , Candida albicans/inmunología , Candida albicans/fisiología , Interacciones Huésped-Patógeno/inmunología , Simbiosis/inmunología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Antígenos Fúngicos/inmunología , Candida albicans/patogenicidad , Colitis/inmunología , Colitis/microbiología , Colitis/patología , Femenino , Vacunas Fúngicas/inmunología , Microbioma Gastrointestinal/inmunología , Humanos , Hifa/inmunología , Inmunoglobulina A/inmunología , Masculino , Ratones , Persona de Mediana Edad , Adulto Joven
15.
Clin Colorectal Cancer ; 20(3): e165-e172, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33935016

RESUMEN

BACKGROUND: Fusobacterium nucleatum (Fn), a bacterium associated with a wide spectrum of infections, has emerged as a key microbe in colorectal carcinogenesis. However, the underlying mechanisms and clinical relevance of Fn in colorectal cancer (CRC) remain incompletely understood. PATIENTS AND METHODS: We examined associations between Fn abundance and clinicopathologic characteristics among 105 treatment-naïve CRC patients enrolled in the international, prospective ColoCare Study. Electronic medical charts, including pathological reports, were reviewed to document clinicopathologic features. Quantitative real-time polymerase chain reaction (PCR) was used to amplify/detect Fn DNA in preoperative fecal samples. Multinomial logistic regression was used to analyze associations between Fn abundance and patient sex, age, tumor stage, grade, site, microsatellite instability, body mass index (BMI), alcohol consumption, and smoking history. Cox proportional hazards models were used to investigate associations of Fn abundance with overall survival in adjusted models. RESULTS: Compared to patients with undetectable or low Fn abundance, patients with high Fn abundance (n = 22) were 3-fold more likely to be diagnosed with rectal versus colon cancer (odds ratio [OR] = 3.01; 95% confidence interval [CI], 1.06-8.57; P = .04) after adjustment for patient sex, age, BMI, and study site. Patients with high Fn abundance also had a 5-fold increased risk of being diagnosed with rectal cancer versus right-sided colon cancer (OR = 5.32; 95% CI, 1.23-22.98; P = .03). There was no statistically significant association between Fn abundance and overall survival. CONCLUSION: Our findings suggest that Fn abundance in fecal samples collected prior to surgery varies by tumor site among treatment-naïve CRC patients. Overall, fecal Fn abundance may have diagnostic and prognostic significance in the clinical management of CRC.


Asunto(s)
Neoplasias Colorrectales , Fusobacterium nucleatum , Humanos , Inestabilidad de Microsatélites , Pronóstico , Estudios Prospectivos
16.
Risk Anal ; 40(7): 1355-1366, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32356921

RESUMEN

Comparing the harmful health effects related to two different tobacco products by applying common risk assessment methods to each individual compound is problematic. We developed a method that circumvents some of these problems by focusing on the change in cumulative exposure (CCE) of the compounds emitted by the two products considered. The method consists of six steps. The first three steps encompass dose-response analysis of cancer data, resulting in relative potency factors with confidence intervals. The fourth step evaluates emission data, resulting in confidence intervals for the expected emission of each compound. The fifth step calculates the change in CCE, probabilistically, resulting in an uncertainty range for the CCE. The sixth step estimates the associated health impact by combining the CCE with relevant dose-response information. As an illustrative case study, we applied the method to eight carcinogens occurring both in the emissions of heated tobacco products (HTPs), a novel class of tobacco products, and tobacco smoke. The CCE was estimated to be 10- to 25-fold lower when using HTPs instead of cigarettes. Such a change indicates a substantially smaller reduction in expected life span, based on available dose-response information in smokers. However, this is a preliminary conclusion, as only eight carcinogens were considered so far. Furthermore, an unfavorable health impact related to HTPs remains as compared to complete abstinence. Our method results in useful information that may help policy makers in better understanding the potential health impact of new tobacco and related products. A similar approach can be used to compare the carcinogenicity of other mixtures.


Asunto(s)
Carcinógenos/toxicidad , Nicotiana/toxicidad , Productos de Tabaco/toxicidad , Carcinógenos/administración & dosificación , Carcinógenos/análisis , Relación Dosis-Respuesta a Droga , Sistemas Electrónicos de Liberación de Nicotina , Calor , Humanos , Exposición por Inhalación , Medición de Riesgo/métodos , Medición de Riesgo/estadística & datos numéricos , Humo/efectos adversos , Humo/análisis , Fumar/efectos adversos , Nicotiana/química , Productos de Tabaco/análisis
17.
BMC Bioinformatics ; 21(1): 191, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32414321

RESUMEN

BACKGROUND: Single cell RNA sequencing (scRNAseq) has provided invaluable insights into cellular heterogeneity and functional states in health and disease. During the analysis of scRNAseq data, annotating the biological identity of cell clusters is an important step before downstream analyses and it remains technically challenging. The current solutions for annotating single cell clusters generally lack a graphical user interface, can be computationally intensive or have a limited scope. On the other hand, manually annotating single cell clusters by examining the expression of marker genes can be subjective and labor-intensive. To improve the quality and efficiency of annotating cell clusters in scRNAseq data, we present a web-based R/Shiny app and R package, Cluster Identity PRedictor (CIPR), which provides a graphical user interface to quickly score gene expression profiles of unknown cell clusters against mouse or human references, or a custom dataset provided by the user. CIPR can be easily integrated into the current pipelines to facilitate scRNAseq data analysis. RESULTS: CIPR employs multiple approaches for calculating the identity score at the cluster level and can accept inputs generated by popular scRNAseq analysis software. CIPR provides 2 mouse and 5 human reference datasets, and its pipeline allows inter-species comparisons and the ability to upload a custom reference dataset for specialized studies. The option to filter out lowly variable genes and to exclude irrelevant reference cell subsets from the analysis can improve the discriminatory power of CIPR suggesting that it can be tailored to different experimental contexts. Benchmarking CIPR against existing functionally similar software revealed that our algorithm is less computationally demanding, it performs significantly faster and provides accurate predictions for multiple cell clusters in a scRNAseq experiment involving tumor-infiltrating immune cells. CONCLUSIONS: CIPR facilitates scRNAseq data analysis by annotating unknown cell clusters in an objective and efficient manner. Platform independence owing to Shiny framework and the requirement for a minimal programming experience allows this software to be used by researchers from different backgrounds. CIPR can accurately predict the identity of a variety of cell clusters and can be used in various experimental contexts across a broad spectrum of research areas.


Asunto(s)
Internet , Anotación de Secuencia Molecular , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Programas Informáticos , Algoritmos , Animales , Secuencia de Bases , Agregación Celular , Análisis por Conglomerados , Bases de Datos Genéticas , Humanos , Ratones
18.
RSC Adv ; 10(36): 21535-21544, 2020 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35518766

RESUMEN

Reducing the concentration of reactive carbonyl species (RCS) in e-cigarette emissions represents a major goal to control their potentially harmful effects. Here, we adopted a novel strategy of trapping carbonyls present in e-cigarette emissions by adding polyphenols in e-liquid formulations. Our work showed that the addition of gallic acid, hydroxytyrosol and epigallocatechin gallate reduced the levels of carbonyls formed in the aerosols of vaped e-cigarettes, including formaldehyde, methylglyoxal and glyoxal. Liquid chromatography mass spectrometry analysis highlighted the formation of covalent adducts between aromatic rings and dicarbonyls in both e-liquids and vaped samples, suggesting that dicarbonyls were formed in the e-liquids as degradation products of propylene glycol and glycerol before vaping. Short-term cytotoxic analysis on two lung cellular models showed that dicarbonyl-polyphenol adducts are not cytotoxic, even though carbonyl trapping did not improve cell viability. Our work sheds lights on the ability of polyphenols to trap RCS in high carbonyl e-cigarette emissions, suggesting their potential value in commercial e-liquid formulations.

19.
Chem Res Toxicol ; 32(10): 2053-2062, 2019 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-31515993

RESUMEN

Analyzing harmful constituents in e-cigarette aerosols typically involves adopting a methodology used for analyzing tobacco smoke. Cambridge filter pads (CFP) are the basis of numerous protocols for analyzing the various classes of compounds representing 93 harmful and potentially harmful constituents identified in tobacco smoke by the FDA. This paper describes a simplified method for trapping the low volatility components of e-cigarette aerosols using a single trapping procedure followed by physical extraction. The trap is a plug of amorphous silica fibers (0.75 g of 4 µm diameter) within a 10 mL syringe inserted between the e-cigarette mouthpiece and the pump of the vaping machine. The method is evaluated for emissions from three generations of e-cigarette device (Kangertech CE4, EVOD, and Subox Mini-C). On average, the silica wool traps about 94% of the vaporized liquid mass in the three devices and higher levels of condensate is retained before reaching saturation compared with CFP. The condensate is then physically extracted from the silica wool plug using a centrifuge. Condensate is then available for use directly in multiple analytical procedures or toxicological experiments. The method is tested by comparison with published analyses of carbonyls, among the most potent toxicants and carcinogens in e-cigarette emissions. Ranges for HPLC-DAD analyses of carbonyl-DNPH derivatives in a laboratory formulation of e-liquid are formaldehyde (0.182 ± 0.023 to 9.896 ± 0.709 µg puff-1), acetaldehyde (0.059 ± 0.005 to 0.791 ± 0.073 µg puff-1), and propionaldehyde (0.008 ± 0.0001 to 0.033 ± 0.023 µg puff-1); other carbonyls are identified and quantified. Carbonyl concentrations are also consistent with published experiments showing marked increases with variable power settings (10W to 50W). Compared with CFPs, e-cigarette aerosol collection by silica wool requires only one vaping session for multiple analyte groups, traps more condensate per puff, and collects more condensate before saturation.


Asunto(s)
Acetona/análisis , Aerosoles/química , Aldehídos/análisis , Sistemas Electrónicos de Liberación de Nicotina , Dióxido de Silicio/química
20.
Science ; 365(6451)2019 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-31346040

RESUMEN

The microbiota influences obesity, yet organisms that protect from disease remain unknown. During studies interrogating host-microbiota interactions, we observed the development of age-associated metabolic syndrome (MetS). Expansion of Desulfovibrio and loss of Clostridia were key features associated with obesity in this model and are present in humans with MetS. T cell-dependent events were required to prevent disease, and replacement of Clostridia rescued obesity. Inappropriate immunoglobulin A targeting of Clostridia and increased Desulfovibrio antagonized the colonization of beneficial Clostridia. Transcriptional and metabolic analysis revealed enhanced lipid absorption in the obese host. Colonization of germ-free mice with Clostridia, but not Desulfovibrio, down-regulated genes that control lipid absorption and reduced adiposity. Thus, immune control of the microbiota maintains beneficial microbial populations that constrain lipid metabolism to prevent MetS.


Asunto(s)
Clostridium/inmunología , Desulfovibrio/inmunología , Microbiota/inmunología , Obesidad/inmunología , Obesidad/microbiología , Linfocitos T Reguladores/inmunología , Animales , Antibiosis , Interacciones Microbiota-Huesped , Absorción Intestinal , Metabolismo de los Lípidos , Síndrome Metabólico/inmunología , Síndrome Metabólico/microbiología , Ratones , Ratones Mutantes , Factor 88 de Diferenciación Mieloide/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA