Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Expert Rev Neurother ; 24(7): 661-680, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38814860

RESUMEN

INTRODUCTION: Infantile epileptic spasms syndrome (IESS) is a common developmental and epileptic encephalopathy with poor long-term outcomes. A substantial proportion of patients with IESS have a potentially surgically remediable etiology. Despite this, epilepsy surgery is underutilized in this patient group. Some surgically remediable etiologies, such as focal cortical dysplasia and malformation of cortical development with oligodendroglial hyperplasia in epilepsy (MOGHE), are under-diagnosed in infants and young children. Even when a surgically remediable etiology is recognised, for example, tuberous sclerosis or focal encephalomalacia, epilepsy surgery may be delayed or not considered due to diffuse EEG changes, unclear surgical boundaries, or concerns about operating in this age group. AREAS COVERED: In this review, the authors discuss the common surgically remediable etiologies of IESS, their clinical and EEG features, and the imaging techniques that can aid in their diagnosis. They then describe the surgical approaches used in this patient group, and the beneficial impact that early epilepsy surgery can have on developing brain networks. EXPERT OPINION: Epilepsy surgery remains underutilized even when a potentially surgically remediable cause is recognized. Overcoming the barriers that result in under-recognition of surgical candidates and underutilization of epilepsy surgery in IESS will improve long-term seizure and developmental outcomes.


Asunto(s)
Electroencefalografía , Espasmos Infantiles , Humanos , Espasmos Infantiles/cirugía , Espasmos Infantiles/diagnóstico , Lactante , Malformaciones del Desarrollo Cortical/cirugía , Malformaciones del Desarrollo Cortical/complicaciones
2.
Neurol Genet ; 10(2): e200135, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38496361

RESUMEN

Background and Objectives: Pathogenic variants in PI3K-AKT-mTOR pathway and GATOR1 complex genes resulting in hyperactivation of mechanistic target of rapamycin (mTOR) complex 1 are a major cause of drug-resistant epilepsy and focal cortical malformations (FCM). Resective neurosurgery is often required to achieve seizure control in patients with mTORopathies due to lack of effectiveness of nonsurgical therapies, including antiseizure medication and mTOR inhibitors. Elevated hyperpolarization-activated cyclic nucleotide-gated potassium channel isoform 4 (HCN4) has been proposed as a key marker in some mTOR-related brain malformations. This study aimed to investigate HCN4 as a biomarker in the brain across the genetic spectrum of mTORopathies in humans. Methods: Our study investigated the relative steady-state levels and cellular localization of HCN4 in resected human brain tissue from 18 individuals with mTORopathies (3 individuals with tuberous sclerosis complex (TSC) due to TSC2 variants, 5 individuals with focal cortical dysplasia type IIA (FCD IIA) due to genetic variants in MTOR, AKT3, and PIK3CA, and 10 individuals with FCD IIB due to variants in TSC1, MTOR, RHEB, DEPDC5, or NPRL3). Results: Elevated HCN4 was observed to be highly restricted to abnormal cell types (dysmorphic neurons and balloon cells) in brain tissue from all mTORopathy tissues (p < 0.0001) compared with those in controls, regardless of genetic cause or variant allele frequency. Elevated HCN4 was not observed in controls or individuals with non-mTOR-related focal epilepsy due to pathogenic variants in ATP1A3, SLC35A2, or FGFR1. Discussion: HCN4 provides a biomarker for the genetic spectrum of mTORopathies and may present a potential therapeutic target for seizure control in mTOR-related epilepsy.

3.
Brain ; 147(4): 1264-1277, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37939785

RESUMEN

Bottom-of-sulcus dysplasia (BOSD) is increasingly recognized as a cause of drug-resistant, surgically-remediable, focal epilepsy, often in seemingly MRI-negative patients. We describe the clinical manifestations, morphological features, localization patterns and genetics of BOSD, with the aims of improving management and understanding pathogenesis. We studied 85 patients with BOSD diagnosed between 2005-2022. Presenting seizure and EEG characteristics, clinical course, genetic findings and treatment response were obtained from medical records. MRI (3 T) and 18F-FDG-PET scans were reviewed systematically for BOSD morphology and metabolism. Histopathological analysis and tissue genetic testing were performed in 64 operated patients. BOSD locations were transposed to common imaging space to study anatomical location, functional network localization and relationship to normal MTOR gene expression. All patients presented with stereotyped focal seizures with rapidly escalating frequency, prompting hospitalization in 48%. Despite 42% patients having seizure remissions, usually with sodium channel blocking medications, most eventually became drug-resistant and underwent surgery (86% seizure-free). Prior developmental delay was uncommon but intellectual, language and executive dysfunction were present in 24%, 48% and 29% when assessed preoperatively, low intellect being associated with greater epilepsy duration. BOSDs were missed on initial MRI in 68%, being ultimately recognized following repeat MRI, 18F-FDG-PET or image postprocessing. MRI features were grey-white junction blurring (100%), cortical thickening (91%), transmantle band (62%), increased cortical T1 signal (46%) and increased subcortical FLAIR signal (26%). BOSD hypometabolism was present on 18F-FDG-PET in 99%. Additional areas of cortical malformation or grey matter heterotopia were present in eight patients. BOSDs predominated in frontal and pericentral cortex and related functional networks, mostly sparing temporal and occipital cortex, and limbic and visual networks. Genetic testing yielded pathogenic mTOR pathway variants in 63% patients, including somatic MTOR variants in 47% operated patients and germline DEPDC5 or NPRL3 variants in 73% patients with familial focal epilepsy. BOSDs tended to occur in regions where the healthy brain normally shows lower MTOR expression, suggesting these regions may be more vulnerable to upregulation of MTOR activity. Consistent with the existing literature, these results highlight (i) clinical features raising suspicion of BOSD; (ii) the role of somatic and germline mTOR pathway variants in patients with sporadic and familial focal epilepsy associated with BOSD; and (iii) the role of 18F-FDG-PET alongside high-field MRI in detecting subtle BOSD. The anatomical and functional distribution of BOSDs likely explain their seizure, EEG and cognitive manifestations and may relate to relative MTOR expression.


Asunto(s)
Epilepsia Refractaria , Epilepsias Parciales , Síndromes Epilépticos , Malformaciones del Desarrollo Cortical , Humanos , Fluorodesoxiglucosa F18 , Malformaciones del Desarrollo Cortical/genética , Epilepsias Parciales/diagnóstico por imagen , Epilepsias Parciales/genética , Epilepsias Parciales/patología , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/genética , Epilepsia Refractaria/cirugía , Imagen por Resonancia Magnética/métodos , Convulsiones/complicaciones , Serina-Treonina Quinasas TOR , Proteínas Activadoras de GTPasa/genética
4.
Epilepsia Open ; 8(1): 205-210, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36461712

RESUMEN

Pathogenic somatic MTOR variants in the cerebral cortex are a frequent cause of focal cortical dysplasia (FCD). We describe a child with drug and surgery-resistant focal epilepsy due to FCD type II who developed progressive enlargement and T2 signal hyperintensity in the ipsilateral caudate and lentiform nuclei. Histopathology of caudate nucleus biopsies showed dysmorphic neurons, similar to those in resected cortex. Genetic analysis of frontal and temporal cortex and caudate nucleus identified a pathogenic somatic MTOR variant [NM_004958.4:c.4375G > C (p.Ala1459Pro)] that was not present in blood-derived gDNA. The mean variant allele frequency ranged from 0.4% to 3.2% in cerebral cortex and up to 5.4% in the caudate nucleus. The basal ganglia abnormalities suggest more widespread, potentially hemispheric dysplasia in this patient, consistent with the pathogenic variant occurring in early cerebral development. This finding provides a potential explanation for persistent seizures in some patients with seemingly complete resection of FCD or disconnection of a dysplastic hemisphere.


Asunto(s)
Encéfalo , Displasia Cortical Focal , Niño , Humanos , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/cirugía , Convulsiones/patología , Ganglios Basales/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
5.
Am J Hum Genet ; 109(4): 601-617, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35395208

RESUMEN

Neurodevelopmental disorders are highly heterogenous conditions resulting from abnormalities of brain architecture and/or function. FBXW7 (F-box and WD-repeat-domain-containing 7), a recognized developmental regulator and tumor suppressor, has been shown to regulate cell-cycle progression and cell growth and survival by targeting substrates including CYCLIN E1/2 and NOTCH for degradation via the ubiquitin proteasome system. We used a genotype-first approach and global data-sharing platforms to identify 35 individuals harboring de novo and inherited FBXW7 germline monoallelic chromosomal deletions and nonsense, frameshift, splice-site, and missense variants associated with a neurodevelopmental syndrome. The FBXW7 neurodevelopmental syndrome is distinguished by global developmental delay, borderline to severe intellectual disability, hypotonia, and gastrointestinal issues. Brain imaging detailed variable underlying structural abnormalities affecting the cerebellum, corpus collosum, and white matter. A crystal-structure model of FBXW7 predicted that missense variants were clustered at the substrate-binding surface of the WD40 domain and that these might reduce FBXW7 substrate binding affinity. Expression of recombinant FBXW7 missense variants in cultured cells demonstrated impaired CYCLIN E1 and CYCLIN E2 turnover. Pan-neuronal knockdown of the Drosophila ortholog, archipelago, impaired learning and neuronal function. Collectively, the data presented herein provide compelling evidence of an F-Box protein-related, phenotypically variable neurodevelopmental disorder associated with monoallelic variants in FBXW7.


Asunto(s)
Proteína 7 que Contiene Repeticiones F-Box-WD , Trastornos del Neurodesarrollo , Ubiquitinación , Proteína 7 que Contiene Repeticiones F-Box-WD/química , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo , Células Germinativas , Mutación de Línea Germinal , Humanos , Trastornos del Neurodesarrollo/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
6.
Int J Mol Sci ; 23(3)2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35163267

RESUMEN

Type II focal cortical dysplasia (FCD) is a neuropathological entity characterised by cortical dyslamination with the presence of dysmorphic neurons only (FCDIIA) or the presence of both dysmorphic neurons and balloon cells (FCDIIB). The year 2021 marks the 50th anniversary of the recognition of FCD as a cause of drug resistant epilepsy, and it is now the most common reason for epilepsy surgery. The causes of FCD remained unknown until relatively recently. The study of resected human FCD tissue using novel genomic technologies has led to remarkable advances in understanding the genetic basis of FCD. Mechanistic parallels have emerged between these non-neoplastic lesions and neoplastic disorders of cell growth and differentiation, especially through perturbations of the mammalian target of rapamycin (mTOR) signalling pathway. This narrative review presents the advances through which the aetiology of FCDII has been elucidated in chronological order, from recognition of an association between FCD and the mTOR pathway to the identification of somatic mosaicism within FCD tissue. We discuss the role of a two-hit mechanism, highlight current challenges and future directions in detecting somatic mosaicism in brain and discuss how knowledge of FCD may inform novel precision treatments of these focal epileptogenic malformations of human cortical development.


Asunto(s)
Epilepsia Refractaria/etiología , Epilepsia/metabolismo , Malformaciones del Desarrollo Cortical de Grupo I/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Encéfalo/metabolismo , Epilepsia Refractaria/genética , Epilepsia Refractaria/fisiopatología , Epilepsia/etiología , Epilepsia/genética , Epilepsia/fisiopatología , Humanos , Malformaciones del Desarrollo Cortical/genética , Malformaciones del Desarrollo Cortical de Grupo I/genética , Malformaciones del Desarrollo Cortical de Grupo I/fisiopatología , Mutación/genética , Neuronas/metabolismo , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/genética
7.
Epilepsy Res ; 171: 106572, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33662678

RESUMEN

Our previous studies suggest the tuber center is the seizure focus in tuberous sclerosis complex (TSC). We report findings from 5 epilepsy surgeries in 4 children with TSC and focal motor seizures from single tubers in primary sensorimotor cortex in which resection was limited to the cortex in the tuber center. Intraoperative electrocorticography showed epileptiform activity in the tuber center, with or without propagation to the tuber rim and surrounding perituberal cortex. Histopathology showed an abundance of dysmorphic neurons in the tuber center compared to the rim in four paired specimens, dysmorphic neurons being the reported epileptogenic cell line in TSC. Associated focal motor seizures were eliminated in all children (mean follow up 6.3 years) without postoperative deficits. Tuber center resections are a potential alternative to complete tuberectomy in patients with epileptogenic tubers in eloquent cortex and potentially also in children with a high tuber load and multifocal seizures.


Asunto(s)
Epilepsia , Convulsiones , Corteza Sensoriomotora , Esclerosis Tuberosa , Electrocorticografía , Electroencefalografía , Epilepsia/etiología , Epilepsia/cirugía , Epilepsia Parcial Motora , Humanos , Convulsiones/etiología , Convulsiones/cirugía , Esclerosis Tuberosa/complicaciones , Esclerosis Tuberosa/cirugía
8.
Ann Clin Transl Neurol ; 8(2): 485-490, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33434304

RESUMEN

Focal cortical dysplasia (FCD) and hemimegalencephaly (HME) are related malformations with shared etiologies. We report three patients with a spectrum of cortical malformations associated with pathogenic brain-specific somatic Ras homolog enriched in brain (RHEB) variants. The somatic variant load directly correlated with the size of the malformation, with upregulated mTOR activity confirmed in dysplastic tissues. Laser capture microdissection showed enrichment of RHEB variants in dysmorphic neurons and balloon cells. Our findings support the role of RHEB in a spectrum of cortical malformations confirming that FCD and HME represent a disease continuum, with the extent of dysplastic brain directly correlated with the somatic variant load.


Asunto(s)
Encéfalo/patología , Epilepsia/etiología , Hemimegalencefalia , Malformaciones del Desarrollo Cortical , Neuronas/patología , Proteína Homóloga de Ras Enriquecida en el Cerebro/genética , Niño , Preescolar , Femenino , Hemimegalencefalia/diagnóstico por imagen , Hemimegalencefalia/etiología , Hemimegalencefalia/genética , Hemimegalencefalia/patología , Humanos , Masculino , Malformaciones del Desarrollo Cortical/diagnóstico por imagen , Malformaciones del Desarrollo Cortical/etiología , Malformaciones del Desarrollo Cortical/genética , Malformaciones del Desarrollo Cortical/patología , Mutación , Serina-Treonina Quinasas TOR/genética , Adulto Joven
9.
Am J Physiol Lung Cell Mol Physiol ; 319(5): L848-L853, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32901522

RESUMEN

Antiretroviral therapy in HIV patients has lengthened lifespan but led to an increased risk for secondary comorbidities, such as pulmonary complications characterized by vascular dysfunction. In the lung, PDGFRß+ mesenchymal cells known as pericytes intimately associate with endothelial cells and are key for their survival both structurally and through the secretion of prosurvival factors. We hypothesize that in HIV infection there are functional changes in pericytes that may lead to destabilization of the microvasculature and ultimately to pulmonary abnormalities. Our objective in this study was to determine whether lung pericytes could be directly infected with HIV. We leveraged lung samples from macaque lungs with or without SIV infection and normal human lung for in vitro experiments. Pericytes were isolated based on the marker platelet-derived growth factor receptor-ß (PDGFRß). We determined that lung PDGFRß-positive (PDGFRß+) pericytes from both macaques and humans express CD4, the primary receptor for SIV/HIV, as well as the major coreceptors CXCR4 and CCR5. We found cells positive for both PDGFRß and SIV in lungs from infected macaques. Lung pericytes isolated from these animals also harbored detectable SIV. To confirm relevance to human disease, we demonstrated that human lung pericytes are capable of being productively infected by HIV in vitro, with the time course of infection suggesting development of viral latency. In summary, we show for the first time that SIV/HIV directly infects lung pericytes, implicating these cells as a novel target and potential reservoir for the virus in vivo.


Asunto(s)
Células Endoteliales/virología , Infecciones por VIH/virología , Pulmón/virología , Macrófagos/virología , Linfocitos T CD4-Positivos/virología , Humanos , Pulmón/inmunología , Macrófagos/inmunología , Receptores CXCR4/inmunología , Virus de la Inmunodeficiencia de los Simios/patogenicidad , Latencia del Virus/fisiología , Replicación Viral
10.
Neurology ; 95(18): e2542-e2551, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-32847954

RESUMEN

OBJECTIVE: To determine the genetic basis of bottom-of-sulcus dysplasia (BOSD), which is a highly focal and epileptogenic cortical malformation in which the imaging, electrophysiologic, and pathologic abnormalities are maximal at the bottom of sulcus, tapering to a normal gyral crown. METHODS: Targeted panel deep sequencing (>500×) was performed on paired blood and brain-derived genomic DNA from 20 operated patients with drug-resistant focal epilepsy and BOSD. Histopathology was assessed using immunohistochemistry. RESULTS: Brain-specific pathogenic somatic variants were found in 6 patients and heterozygous pathogenic germline variants were found in 2. Somatic variants were identified in MTOR and germline variants were identified in DEPDC5 and NPRL3. Two patients with somatic MTOR variants showed a mutation gradient, with higher mutation load at the bottom of sulcus compared to the gyral crown. Immunohistochemistry revealed an abundance of dysmorphic neurons and balloon cells in the bottom of sulcus but not in the gyral crown or adjacent gyri. CONCLUSIONS: BOSD is associated with mTOR pathway dysregulation and shares common genetic etiologies and pathogenic mechanisms with other forms of focal and hemispheric cortical dysplasia, suggesting these disorders are on a genetic continuum.


Asunto(s)
Malformaciones del Desarrollo Cortical/genética , Serina-Treonina Quinasas TOR/genética , Adolescente , Niño , Preescolar , Epilepsia Refractaria/complicaciones , Epilepsia Refractaria/genética , Epilepsias Parciales/complicaciones , Epilepsias Parciales/genética , Femenino , Humanos , Lactante , Masculino , Malformaciones del Desarrollo Cortical/complicaciones , Malformaciones del Desarrollo Cortical/patología , Malformaciones del Desarrollo Cortical/cirugía , Mutación
11.
Front Neurol ; 11: 523, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32670181

RESUMEN

Pathogenic variants in the gene encoding RAB39B, resulting in the loss of protein function, lead to the development of X-linked early-onset parkinsonism. The gene is located within a chromosomal region that is susceptible to genomic rearrangement, and while an increased dosage of RAB39B was previously associated with cognitive impairment, the potential role of dosage alterations in Parkinson's disease (PD) remains to be determined. This study aimed to investigate the contribution of the genetic variation in RAB39B to the development of early-onset PD. We performed gene dosage studies and sequence analysis in a cohort of 176 individuals with early-onset PD (age of onset ≤ 50 years) of unknown genetic etiology. An assessment of the copy number variation over both coding exons and the 3' untranslated region (UTR) of RAB39B did not identify any alterations in gene dosage. An analysis of the UTRs identified two male individuals carrying single, likely benign, nucleotide variants in the 3'UTR (chrX:154489749-A-G and chrX:154489197-T-G). Furthermore, one novel variant of uncertain significance was identified in the 5'UTR, 229 bp upstream of the start codon (chrX:154493802-C-T). In silico analyses predicted that this variant disrupts a highly conserved transcription factor binding site and could impact RAB39B expression. The results of this study do not support a significant role for genetic variation in RAB39B as contributing to early-onset PD but do highlight that additional molecular studies are required to determine the mechanisms regulating RAB39B expression and their association with the disease. Genetic investigations in larger parkinsonism/PD cohorts and longitudinal studies of individuals with cognitive impairment due to an altered dosage of RAB39B will be required to fully delineate the contribution of RAB39B to parkinsonism.

12.
Mol Brain ; 13(1): 52, 2020 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-32228644

RESUMEN

Pathogenic variants in the gene encoding the small GTPase Ras analogue in Brain 39b (RAB39B) are associated with early-onset parkinsonism. In this study we investigated the expression and localization of RAB39B (RNA and protein) in mouse brain tissue to gain a better understanding of its normal physiological function(s) and role in disease.We developed novel resources, including monoclonal antibodies directed against RAB39B and mice with Rab39b knockout, and performed real-time PCR and western blot analysis on whole brain lysates. To determine the spatial localization of Rab39b RNA and protein, we performed in-situ hybridization and immunohistochemistry on fresh frozen and fixed brain tissue. Our results show that RAB39B is localized throughout the cortex, hippocampus and substantia nigra of mice throughout postnatal life. We found high levels of RAB39B within MAP2 positive cortical and hippocampal neurons, and TH positive dopaminergic neurons in the substantia nigra pars compacta.Our studies support and extend current knowledge of the localization of RAB39B. We validate RAB39B as a neuron-enriched protein and demonstrate that it is present throughout the mouse cortex and hippocampus. Further, we observe high levels in the substantia nigra pars compacta, the brain region most affected in Parkinson's disease pathology. The distribution of Rab39b is consistent with human disease associations with parkinsonism and cognitive impairment. We also describe and validate novel resources, including monoclonal antibodies directed against RAB39B and mice with Rab39b knockout, both of which are valuable tools for future studies of the molecular function of RAB39B.


Asunto(s)
Encéfalo/metabolismo , Enfermedad de Parkinson/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Animales , Anticuerpos Monoclonales/inmunología , Ratones Noqueados , Factores de Tiempo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/inmunología
13.
Ann Clin Transl Neurol ; 6(7): 1338-1344, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31353856

RESUMEN

Focal cortical dysplasia (FCD) causes drug-resistant epilepsy and is associated with pathogenic variants in mTOR pathway genes. How germline variants cause these focal lesions is unclear, however a germline + somatic "2-hit" model is hypothesized. In a boy with drug-resistant epilepsy, FCD, and a germline DEPDC5 pathogenic variant, we show that a second-hit DEPDC5 variant is limited to dysmorphic neurons, and the somatic mutation load correlates with both dysmorphic neuron density and the epileptogenic zone. These findings provide new insights into the molecular and cellular correlates of FCD determining drug-resistant epilepsy and refine conceptualization of the epileptogenic zone.


Asunto(s)
Proteínas Activadoras de GTPasa/genética , Malformaciones del Desarrollo Cortical/genética , Neuronas/patología , Encéfalo/diagnóstico por imagen , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Niño , Epilepsia Refractaria/genética , Humanos , Masculino , Malformaciones del Desarrollo Cortical/diagnóstico por imagen , Malformaciones del Desarrollo Cortical/patología , Malformaciones del Desarrollo Cortical/fisiopatología , Mutación , Serina-Treonina Quinasas TOR/genética
14.
Am J Hum Genet ; 104(5): 914-924, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-30982611

RESUMEN

Glypicans are a family of cell-surface heparan sulfate proteoglycans that regulate growth-factor signaling during development and are thought to play a role in the regulation of morphogenesis. Whole-exome sequencing of the Australian family that defined Keipert syndrome (nasodigitoacoustic syndrome) identified a hemizygous truncating variant in the gene encoding glypican 4 (GPC4). This variant, located in the final exon of GPC4, results in premature termination of the protein 51 amino acid residues prior to the stop codon, and in concomitant loss of functionally important N-linked glycosylation (Asn514) and glycosylphosphatidylinositol (GPI) anchor (Ser529) sites. We subsequently identified seven affected males from five additional kindreds with novel and predicted pathogenic variants in GPC4. Segregation analysis and X-inactivation studies in carrier females provided supportive evidence that the GPC4 variants caused the condition. Furthermore, functional studies of recombinant protein suggested that the truncated proteins p.Gln506∗ and p.Glu496∗ were less stable than the wild type. Clinical features of Keipert syndrome included a prominent forehead, a flat midface, hypertelorism, a broad nose, downturned corners of mouth, and digital abnormalities, whereas cognitive impairment and deafness were variable features. Studies of Gpc4 knockout mice showed evidence of the two primary features of Keipert syndrome: craniofacial abnormalities and digital abnormalities. Phylogenetic analysis demonstrated that GPC4 is most closely related to GPC6, which is associated with a bone dysplasia that has a phenotypic overlap with Keipert syndrome. Overall, we have shown that pathogenic variants in GPC4 cause a loss of function that results in Keipert syndrome, making GPC4 the third human glypican to be linked to a genetic syndrome.


Asunto(s)
Sordera/congénito , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/patología , Variación Genética , Glipicanos/genética , Deformidades Congénitas de las Extremidades Inferiores/genética , Deformidades Congénitas de las Extremidades Inferiores/patología , Adulto , Niño , Preescolar , Sordera/genética , Sordera/patología , Femenino , Humanos , Lactante , Masculino , Linaje , Fenotipo , Adulto Joven
15.
Am J Physiol Lung Cell Mol Physiol ; 315(6): L991-L1002, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30335500

RESUMEN

Pericytes are key regulators of the microvasculature through their close interactions with the endothelium. However, pericytes play additional roles in tissue homeostasis and repair, in part by transitioning into myofibroblasts. Accumulation of myofibroblasts is a hallmark of fibrotic diseases such as idiopathic pulmonary fibrosis (IPF). To understand the contribution and role of pericytes in human lung fibrosis, we isolated these cells from non-IPF control and IPF lung tissues based on expression of platelet-derived growth factor receptor-ß (PDGFR-ß), a common marker of pericytes. When cultured in a specialized growth medium, PDGFR-ß+ cells retain the morphology and marker profile typical of pericytes. We found that IPF pericytes migrated more rapidly and invaded a basement membrane matrix more readily than control pericytes. Exposure of cells to transforming growth factor-ß, a major fibrosis-inducing cytokine, increased expression of α-smooth muscle actin and extracellular matrix genes in both control and IPF pericytes. Given that pericytes are uniquely positioned in vivo to respond to danger signals of both systemic and tissue origin, we stimulated human lung pericytes with agonists having pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs). Both control and IPF lung pericytes increased expression of proinflammatory chemokines in response to specific PAMPs and DAMPs released from necrotic cells. Our results suggest that control and IPF lung pericytes are poised to react to tissue damage, as well as microbial and fibrotic stimuli. However, IPF pericytes are primed for migration and matrix invasion, features that may contribute to the function of these cells in lung fibrosis.


Asunto(s)
Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Pulmón/metabolismo , Pulmón/patología , Pericitos/metabolismo , Pericitos/patología , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Adulto , Anciano , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis/metabolismo , Fibrosis/patología , Humanos , Masculino , Persona de Mediana Edad , Miofibroblastos/metabolismo , Miofibroblastos/patología , Factor de Crecimiento Transformador beta/metabolismo , Adulto Joven
16.
Mucosal Immunol ; 11(5): 1375-1385, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29907871

RESUMEN

Chronic rhinosinusitis with nasal polyps (CRSwNP) is an inflammatory disease with an unknown etiology. Recent studies have implicated the complement system as a potential modulator of disease immunopathology. We performed proteomic pathway enrichment analysis of differentially increased proteins, and found an enrichment of complement cascade pathways in the nasal mucus of individuals with CRSwNP as compared to control subjects. Sinonasal mucus levels of complement 3 (C3) correlated with worse subjective disease severity, whereas no significant difference in systemic C3 levels could be determined in plasma samples. Given that human sinonasal epithelial cells were the predominate sinonasal source of C3 and complement anaphylatoxin 3a (C3a) staining, we focused on their role in in vitro studies. Baseline intracellular C3 levels were higher in CRSwNP cells, and following exposure to Aspergillus fumigatus (Af) extract, they released significantly more C3 and C3a. Inhibition of complement 3a receptor (C3aR) signaling led to a decrease in Af-induced C3 and C3a release, both in vitro and in vivo. Finally, we found in vivo that C3aR deficiency or inhibition significantly reduced inflammation and CRS development in a mouse model of Af-induced CRS. These findings demonstrate that local sinonasal complement activation correlates with subjective disease severity, and that local C3aR antagonism significantly ameliorates Af-induced CRS in a rodent model.


Asunto(s)
Receptores de Complemento/antagonistas & inhibidores , Rinosporidiosis/tratamiento farmacológico , Rinosporidiosis/inmunología , Animales , Aspergillus fumigatus/patogenicidad , Línea Celular , Enfermedad Crónica , Complemento C3/metabolismo , Modelos Animales de Enfermedad , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Humanos , Inflamación/tratamiento farmacológico , Inflamación/inmunología , Ratones , Ratones Endogámicos BALB C , Mucosa Nasal/efectos de los fármacos , Mucosa Nasal/inmunología , Pólipos Nasales/tratamiento farmacológico , Pólipos Nasales/inmunología , Proteoma/inmunología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología
17.
Sci Rep ; 8(1): 7528, 2018 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-29760428

RESUMEN

Mutations in PARK2 (parkin) can result in Parkinson's disease (PD). Parkin shares a bidirectional promoter with parkin coregulated gene (PACRG) and the transcriptional start sites are separated by only ~200 bp. Bidirectionally regulated genes have been shown to function in common biological pathways. Mice lacking parkin have largely failed to recapitulate the dopaminergic neuronal loss and movement impairments seen in individuals with parkin-mediated PD. We aimed to investigate the function of PACRG and test the hypothesis that parkin and PACRG function in a common pathway by generating and characterizing two novel knockout mouse lines harbouring loss of both parkin and Pacrg or Pacrg alone. Successful modification of the targeted allele was confirmed at the genomic, transcriptional and steady state protein levels for both genes. At 18-20 months of age, there were no significant differences in the behaviour of parental and mutant lines when assessed by openfield, rotarod and balance beam. Subsequent neuropathological examination suggested there was no gross abnormality of the dopaminergic system in the substantia nigra and no significant difference in the number of dopaminergic neurons in either knockout model compared to wildtype mice.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Proteínas/genética , Sustancia Negra/metabolismo , Ubiquitina-Proteína Ligasas/genética , Animales , Conducta Animal , Femenino , Técnicas de Inactivación de Genes , Masculino , Ratones , Ratones Noqueados , Proteínas de Microfilamentos , Chaperonas Moleculares , Regiones Promotoras Genéticas , Proteínas/metabolismo , Proteínas de Unión al ARN/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
18.
Mov Disord ; 33(2): 196-207, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29315801

RESUMEN

The identification of pathogenic mutations in Ras analog in brain 39B (RAB39B) and Ras analog in brain 32 (RAB32) that cause Parkinson's disease (PD) has highlighted the emerging role of protein trafficking in disease pathogenesis. Ras analog in brain (Rab) Guanosine triphosphatase (GTPase) function as master regulators of membrane trafficking, including vesicle formation, movement along cytoskeletal networks, and membrane fusion. Recent studies have linked Rab GTPases with α-synuclein, Leucine-rich repeat kinase 2, and Vacuolar protein sorting 35, 3 key proteins in PD pathogenesis. In this review, we discuss the various RAB GTPases associated with PD, current progress in the research, and potential future directions. Investigations into the function of RAB GTPases will likely provide significant insight into the etiology of PD and identify novel therapeutic targets for a currently incurable disease. © 2018 International Parkinson and Movement Disorder Society.


Asunto(s)
Encéfalo/enzimología , Mutación/genética , Enfermedad de Parkinson/genética , Proteínas de Unión al GTP rab/genética , Animales , Predisposición Genética a la Enfermedad/genética , Humanos , Enfermedad de Parkinson/patología
19.
Am J Physiol Lung Cell Mol Physiol ; 314(4): L583-L592, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29351445

RESUMEN

Emphysema is one of the most common lung diseases in HIV+ individuals. The pathogenesis of HIV-associated emphysema remains unclear; however, radiographic distribution and earlier age of presentation of emphysema in the lungs of HIV+ patients are similar to deficiency of α1-antitrypsin (A1AT), a key elastase inhibitor in the lung. Reduced levels of circulating A1AT in HIV+ patients suggest a potential mechanism for emphysema development. In the present study we asked if A1AT levels and activity in the bronchoalveolar lavage fluid (BALF) differ in HIV+ and HIV- patients with and without emphysema. A1AT levels were measured by ELISA in plasma and BALF from a cohort of 21 HIV+ and 29 HIV- patients with or without emphysematous changes on chest CT scan. To analyze A1AT function, we measured elastase activity in the BALF and assessed oxidation and polymerization of A1AT by Western blotting. Total A1AT was increased in the BALF, but not in the plasma, of HIV+ compared with HIV- patients, regardless of the presence or absence of emphysema. However, antielastase activity was decreased in BALF from HIV+ patients, suggesting impaired A1AT function. Higher levels of the oxidized form of A1AT were detected in BALF from HIV+ than HIV- patients, which may account for the decreased antielastase activity. These findings suggest that, in the lungs of HIV+ patients, posttranslational modifications of A1AT produce a "functional deficiency" of this critical elastase inhibitor, which may contribute to emphysema development.


Asunto(s)
Biomarcadores/sangre , Infecciones por VIH/complicaciones , Enfisema Pulmonar/sangre , Inhibidores de Tripsina/sangre , alfa 1-Antitripsina/sangre , Líquido del Lavado Bronquioalveolar , Estudios de Cohortes , Femenino , VIH/aislamiento & purificación , Infecciones por VIH/virología , Humanos , Masculino , Persona de Mediana Edad , Enfisema Pulmonar/etiología , Enfisema Pulmonar/patología
20.
Chronic Obstr Pulm Dis ; 4(3): 204-216, 2017 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-28848932

RESUMEN

Computed tomography (CT) lung density is an accepted biomarker for emphysema in alpha-1 antitrypsin deficiency (AATD), although concerns for radiation exposure limit its longitudinal use. Serum proteins associated with emphysema, particularly in early disease, may provide additional pathogenic insights. We investigated whether distinct proteomic signatures characterize the presence and progression of emphysema in individuals with severe AATD and normal forced expiratory volume in 1 second (FEV1). QUANTitative lung CT UnMasking emphysema progression in AATD (QUANTUM-1) is a multicenter, prospective 3-year study of 49 adults with severe AATD and FEV1 post-bronchodilator values (Post-BD) ≥ 80% predicted. All participants received chest CT, serial spirometry, and contributed to the serum biobank. Volumetric imaging display and analysis (VIDA) software defined the baseline 15th percentile density (PD15) which was indexed to CT-derived total lung capacity (TLC). We measured 317 proteins using a multiplexed immunoassay (Myriad Discovery MAP® panel) in 31 individuals with a complete dataset. We analyzed associations between initial PD15/TLC, PD15/TLC annual decline, body mass index (BMI), and protein levels using Pearson's product moment correlation. C-reactive protein (CRP), adipocyte fatty acid-binding protein (AFBP), leptin, and tissue plasminogen activator (tPA) were found to be associated with baseline emphysema and all but leptin were associated with emphysema progression after adjustments were made for age and sex. All 4 proteins were associated with BMI after further adjustment for multiple comparisons was made. The relationship between these proteins and BMI, and further validation of these findings in replicative cohorts require additional studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...