Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38627266

RESUMEN

Depression is common in attention-deficit/hyperactivity disorder (ADHD), but preventive behavioural interventions are lacking. This randomised controlled, pilot phase-IIa trial aimed to study a physical exercise intervention (EI) and bright light therapy (BLT)-both implemented and monitored in an individual, naturalistic setting via a mobile health (m-health) system-for feasibility of trial design and interventions, and to estimate their effects on depressive symptoms in young people with ADHD. Two hundred seven participants aged 14-45 years were randomised to 10-week add-on intervention of either BLT (10,000 lx; daily 30-min sessions) (n = 70), EI (aerobic and muscle-strengthening activities 3 days/ week) (n = 69), or treatment-as-usual (TAU) (n = 68), of whom 165 (80%) were retained (BLT: n = 54; EI: n = 52; TAU: n = 59). Intervention adherence (i.e. ≥ 80% completed sessions) was very low for both BLT (n = 13, 22%) and EI (n = 4, 7%). Usability of the m-health system to conduct interventions was limited as indicated by objective and subjective data. Safety was high and comparable between groups. Changes in depressive symptoms (assessed via observer-blind ratings, Inventory of Depressive Symptomatology) between baseline and end of intervention were small (BLT: -0.124 [95% CI: -2.219, 1.971], EI: -2.646 [95% CI: -4.777, -0.515], TAU: -1.428 [95% CI: -3.381, 0.526]) with no group differences [F(2,153) = 1.45, p = 0.2384]. These findings suggest that the m-health approach did not achieve feasibility of EI and BLT in young people with ADHD. Prior to designing efficacy studies, strategies how to achieve high intervention adherence should be specifically investigated in this patient group. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03371810, 13 December 2017.

2.
Nat Cancer ; 4(1): 96-107, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36581734

RESUMEN

Patients with cancer are at high risk of severe coronavirus disease 2019 (COVID-19), with high morbidity and mortality. Furthermore, impaired humoral response renders severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines less effective and treatment options are scarce. Randomized trials using convalescent plasma are missing for high-risk patients. Here, we performed a randomized, open-label, multicenter trial ( https://www.clinicaltrialsregister.eu/ctr-search/trial/2020-001632-10/DE ) in hospitalized patients with severe COVID-19 (n = 134) within four risk groups ((1) cancer (n = 56); (2) immunosuppression (n = 16); (3) laboratory-based risk factors (n = 36); and (4) advanced age (n = 26)) randomized to standard of care (control arm) or standard of care plus convalescent/vaccinated anti-SARS-CoV-2 plasma (plasma arm). No serious adverse events were observed related to the plasma treatment. Clinical improvement as the primary outcome was assessed using a seven-point ordinal scale. Secondary outcomes were time to discharge and overall survival. For the four groups combined, those receiving plasma did not improve clinically compared with those in the control arm (hazard ratio (HR) = 1.29; P = 0.205). However, patients with cancer experienced a shortened median time to improvement (HR = 2.50; P = 0.003) and superior survival with plasma treatment versus the control arm (HR = 0.28; P = 0.042). Neutralizing antibody activity increased in the plasma cohort but not in the control cohort of patients with cancer (P = 0.001). Taken together, convalescent/vaccinated plasma may improve COVID-19 outcomes in patients with cancer who are unable to intrinsically generate an adequate immune response.


Asunto(s)
COVID-19 , Neoplasias , Humanos , COVID-19/terapia , SARS-CoV-2 , Inmunización Pasiva/efectos adversos , Resultado del Tratamiento , Sueroterapia para COVID-19 , Anticuerpos Antivirales , Neoplasias/terapia
3.
Trials ; 21(1): 828, 2020 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-33023671

RESUMEN

OBJECTIVES: Primary objectives • To assess the time from randomisation until an improvement within 84 days defined as two points on a seven point ordinal scale or live discharge from the hospital in high-risk patients (group 1 to group 4) with SARS-CoV-2 infection requiring hospital admission by infusion of plasma from subjects after convalescence of SARS-CoV-2 infection or standard of care. Secondary objectives • To assess overall survival, and the overall survival rate at 28 56 and 84 days. • To assess SARS-CoV-2 viral clearance and load as well as antibody titres. • To assess the percentage of patients that required mechanical ventilation. • To assess time from randomisation until discharge. TRIAL DESIGN: Randomised, open-label, multicenter phase II trial, designed to assess the clinical outcome of SARS-CoV-2 disease in high-risk patients (group 1 to group 4) following treatment with anti-SARS-CoV-2 convalescent plasma or standard of care. PARTICIPANTS: High-risk patients >18 years of age hospitalized with SARS-CoV-2 infection in 10-15 university medical centres will be included. High-risk is defined as SARS-CoV-2 positive infection with Oxygen saturation at ≤ 94% at ambient air with additional risk features as categorised in 4 groups: • Group 1, pre-existing or concurrent hematological malignancy and/or active cancer therapy (incl. chemotherapy, radiotherapy, surgery) within the last 24 months or less. • Group 2, chronic immunosuppression not meeting the criteria of group 1. • Group 3, age ≥ 50 - 75 years meeting neither the criteria of group 1 nor group 2 and at least one of these criteria: Lymphopenia < 0.8 x G/l and/or D-dimer > 1µg/mL. • Group 4, age ≥ 75 years meeting neither the criteria of group 1 nor group 2. Observation time for all patients is expected to be at least 3 months after entry into the study. Patients receive convalescent plasma for two days (day 1 and day 2) or standard of care. For patients in the standard arm, cross over is allowed from day 10 in case of not improving or worsening clinical condition. Nose/throat swabs for determination of viral load are collected at day 0 and day 1 (before first CP administration) and subsequently at day 2, 3, 5, 7, 10, 14, 28 or until discharge. Serum for SARS-Cov-2 diagnostic is collected at baseline and subsequently at day 3, 7, 14 and once during the follow-up period (between day 35 and day 84). There is a regular follow-up of 3 months. All discharged patients are followed by regular phone calls. All visits, time points and study assessments are summarized in the Trial Schedule (see full protocol Table 1). All participating trial sites will be supplied with study specific visit worksheets that list all assessments and procedures to be completed at each visit. All findings including clinical and laboratory data are documented by the investigator or an authorized member of the study team in the patient's medical record and in the electronic case report forms (eCRFs). INTERVENTION AND COMPARATOR: This trial will analyze the effects of convalescent plasma from recovered subjects with SARS-CoV-2 antibodies in high-risk patients with SARS-CoV-2 infection. Patients at high risk for a poor outcome due to underlying disease, age or condition as listed above are eligible for enrollment. In addition, eligible patients have a confirmed SARS-CoV-2 infection and O2 saturation ≤ 94% while breathing ambient air. Patients are randomised to receive (experimental arm) or not receive (standard arm) convalescent plasma in two bags (238 - 337 ml plasma each) from different donors (day 1, day 2). A cross over from the standard arm into the experimental arm is possible after day 10 in case of not improving or worsening clinical condition. MAIN OUTCOMES: Primary endpoints: The main purpose of the study is to assess the time from randomisation until an improvement within 84 days defined as two points on a seven-point ordinal scale or live discharge from the hospital in high-risk patients (group 1 to group 4) with SARS-CoV-2 infection requiring hospital admission by infusion of plasma from subjects after convalescence of a SARS-CoV-2 infection or standard of care. Secondary endpoints: • Overall survival, defined as the time from randomisation until death from any cause 28-day, 56-day and 84-day overall survival rates. • SARS-CoV-2 viral clearance and load as well as antibody titres. • Requirement mechanical ventilation at any time during hospital stay (yes/no). • Time until discharge from randomisation. • Viral load, changes in antibody titers and cytokine profiles are analysed in an exploratory manner using paired non-parametric tests (before - after treatment). RANDOMISATION: Upon confirmation of eligibility (patients must meet all inclusion criteria and must not meet exclusion criteria described in section 5.3 and 5.4 of the full protocol), the clinical site must contact a centralized internet randomization system ( https://randomizer.at/ ). Patients are randomized using block randomisation to one of the two arms, experimental arm or standard arm, in a 1:1 ratio considering a stratification according to the 4 risk groups (see Participants). BLINDING (MASKING): The study is open-label, no blinding will be performed. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): A total number of 174 patients is required for the entire trial, n=87 per group. TRIAL STATUS: Protocol version 1.2 dated 09/07/2020. A recruitment period of approximately 9 months and an overall study duration of approximately 12 months is anticipated. Recruitment of patients starts in the third quarter of 2020. The study duration of an individual patient is planned to be 3 months. After finishing all study-relevant procedures, therapy, and follow-up period, the patient is followed in terms of routine care and treated if necessary. Total trial duration: 18 months Duration of the clinical phase: 12 months First patient first visit (FPFV): 3rd Quarter 2020 Last patient first visit (LPFV): 2nd Quarter 2021 Last patient last visit (LPLV): 3rd Quarter 2021 Trial Report completed: 4th Quarter 2021 TRIAL REGISTRATION: EudraCT Number: 2020-001632-10, https://www.clinicaltrialsregister.eu/ctr-search/trial/2020-001632-10/DE , registered on 04/04/2020. FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol. The study protocol has been reported in accordance with the Standard Protocol Items: Recommendations for Clinical Interventional Trials (SPIRIT) guidelines (Additional file 2). The eCRF is attached (Additional file 3).


Asunto(s)
Anticuerpos Antivirales/sangre , Betacoronavirus , Infecciones por Coronavirus , Pandemias , Plasma/inmunología , Neumonía Viral , Anciano , Betacoronavirus/inmunología , Betacoronavirus/aislamiento & purificación , COVID-19 , Ensayos Clínicos Fase II como Asunto , Convalecencia , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/terapia , Femenino , Humanos , Inmunización Pasiva/métodos , Masculino , Persona de Mediana Edad , Monitoreo Fisiológico/métodos , Estudios Multicéntricos como Asunto , Neumonía Viral/diagnóstico , Neumonía Viral/inmunología , Neumonía Viral/terapia , Ensayos Clínicos Controlados Aleatorios como Asunto , Ajuste de Riesgo , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Sueroterapia para COVID-19
4.
Stem Cells ; 36(11): 1752-1763, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30063808

RESUMEN

The trabecular extracellular matrix (ECM) forms a three-dimensional scaffold to stabilize the bone marrow, provide substrates for cell-matrix interactions and retain, present or release signals to modulate hematopoietic stem and progenitor cell development. However, the impact of trabecular ECM components on hematopoiesis has been poorly studied. Using collagen IX alpha1 - deficient (Col9a1(-/-) ) mice, we revealed that a lack of collagen IX alpha1 results in a disorganized trabecular network enriched in fibronectin, and in a reduction in myeloid cells, which was accompanied by a decrease in colony-stimulating factor 1 receptor expression on monocytes from the bone marrow. In contrast, B-cell numbers in the bone marrow and T-cell numbers in the thymus remained unchanged. Alterations in the bone marrow microenvironment may not only reduce myeloid cell numbers, but also have long-term implications for myeloid cell function. Mice were infected with Listeria moncytogenes to analyze the function of myeloid cells. In this case, an inadequate macrophage-dependent clearance of bacterial infections was observed in Col9a1(-/-) mice in vivo. This was mainly caused by an impaired interferon-gamma/tumor necrosis factor-alpha-mediated activation of macrophages. The loss of collagen IX alpha1 therefore destabilizes the trabecular bone network, impairs myeloid cell differentiation, and affects the innate immune response against Listeria. Stem Cells 2018;36:1752-1763.


Asunto(s)
Colágeno/metabolismo , Células Mieloides/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Citometría de Flujo , Humanos , Ratones
5.
J Biol Chem ; 288(19): 13481-92, 2013 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-23530037

RESUMEN

BACKGROUND: Collagen IX is an integral cartilage extracellular matrix component important in skeletal development and joint function. RESULTS: Proteomic analysis and validation studies revealed novel alterations in collagen IX null cartilage. CONCLUSION: Matrilin-4, collagen XII, thrombospondin-4, fibronectin, ßig-h3, and epiphycan are components of the in vivo collagen IX interactome. SIGNIFICANCE: We applied a proteomics approach to advance our understanding of collagen IX ablation in cartilage. The cartilage extracellular matrix is essential for endochondral bone development and joint function. In addition to the major aggrecan/collagen II framework, the interacting complex of collagen IX, matrilin-3, and cartilage oligomeric matrix protein (COMP) is essential for cartilage matrix stability, as mutations in Col9a1, Col9a2, Col9a3, Comp, and Matn3 genes cause multiple epiphyseal dysplasia, in which patients develop early onset osteoarthritis. In mice, collagen IX ablation results in severely disturbed growth plate organization, hypocellular regions, and abnormal chondrocyte shape. This abnormal differentiation is likely to involve altered cell-matrix interactions but the mechanism is not known. To investigate the molecular basis of the collagen IX null phenotype we analyzed global differences in protein abundance between wild-type and knock-out femoral head cartilage by capillary HPLC tandem mass spectrometry. We identified 297 proteins in 3-day cartilage and 397 proteins in 21-day cartilage. Components that were differentially abundant between wild-type and collagen IX-deficient cartilage included 15 extracellular matrix proteins. Collagen IX ablation was associated with dramatically reduced COMP and matrilin-3, consistent with known interactions. Matrilin-1, matrilin-4, epiphycan, and thrombospondin-4 levels were reduced in collagen IX null cartilage, providing the first in vivo evidence for these proteins belonging to the collagen IX interactome. Thrombospondin-4 expression was reduced at the mRNA level, whereas matrilin-4 was verified as a novel collagen IX-binding protein. Furthermore, changes in TGFß-induced protein ßig-h3 and fibronectin abundance were found in the collagen IX knock-out but not associated with COMP ablation, indicating specific involvement in the abnormal collagen IX null cartilage. In addition, the more widespread expression of collagen XII in the collagen IX-deficient cartilage suggests an attempted compensatory response to the absence of collagen IX. Our differential proteomic analysis of cartilage is a novel approach to identify candidate matrix protein interactions in vivo, underpinning further analysis of mutant cartilage lacking other matrix components or harboring disease-causing mutations.


Asunto(s)
Cartílago Articular/metabolismo , Colágeno Tipo IX/deficiencia , Matriz Extracelular/metabolismo , Proteoma/metabolismo , Animales , Colágeno Tipo IX/genética , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Cabeza Femoral/metabolismo , Expresión Génica , Proteínas Matrilinas , Ratones , Ratones Endogámicos C57BL , Unión Proteica , Mapeo de Interacción de Proteínas , Mapas de Interacción de Proteínas , Trombospondinas/genética , Trombospondinas/metabolismo , Electroforesis Bidimensional Diferencial en Gel
6.
J Bone Miner Res ; 27(11): 2399-412, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22692895

RESUMEN

Numerous biochemical studies have pointed to an essential role of annexin A5 (AnxA5), annexin A6 (AnxA6), and collagen X in matrix vesicle-mediated biomineralization during endochondral ossification and in osteoarthritis. By binding to the extracellular matrix protein collagen X and matrix vesicles, annexins were proposed to anchor matrix vesicles in the extracellular space of hypertrophic chondrocytes to initiate the calcification of cartilage. However, mineralization appears to be normal in mice lacking AnxA5 and AnxA6, whereas collagen X-deficient mice show only subtle alterations in the growth plate organization. We hypothesized that the simultaneous lack of AnxA5, AnxA6, and collagen X in vivo induces more pronounced changes in the growth plate development and the initiation of mineralization. In this study, we generated and analyzed mice deficient for AnxA5, AnxA6, and collagen X. Surprisingly, mice were viable, fertile, and showed no obvious abnormalities. Assessment of growth plate development indicated that the hypertrophic zone was expanded in Col10a1(-/-) and AnxA5(-/-) AnxA6(-/-) Col10a1(-/-) newborns, whereas endochondral ossification and mineralization were not affected in 13-day- and 1-month-old mutants. In peripheral quantitative computed tomography, no changes in the degree of biomineralization were found in femora of 1-month- and 1-year-old mutants even though the diaphyseal circumference was reduced in Col10a1(-/-) and AnxA5(-/-) AnxA6(-/-) Col10a1(-/-) mice. The percentage of naive immature IgM(+) /IgM(+) B cells and peripheral T-helper cells were increased in Col10a1(-/-) and AnxA5(-/-) AnxA6(-/-) Col10a1(-/-) mutants, and activated splenic T cells isolated from Col10a1(-/-) mice secreted elevated levels of IL-4 and GM-CSF. Hence, collagen X is needed for hematopoiesis during endochondral ossification and for the immune response, but the interaction of annexin A5, annexin A6, and collagen X is not essential for physiological calcification of growth plate cartilage. Therefore, annexins and collagen X may rather fulfill functions in growth plate cartilage not directly linked to the mineralization process.


Asunto(s)
Anexina A5/deficiencia , Anexina A6/deficiencia , Calcificación Fisiológica , Colágeno Tipo X/deficiencia , Matriz Extracelular/metabolismo , Hematopoyesis , Linfocitos T Colaboradores-Inductores/inmunología , Animales , Animales Recién Nacidos , Anexina A5/metabolismo , Anexina A6/metabolismo , Huesos/patología , Colágeno Tipo X/metabolismo , Cruzamientos Genéticos , Femenino , Placa de Crecimiento/metabolismo , Placa de Crecimiento/patología , Hipertrofia , Activación de Linfocitos/inmunología , Masculino , Ratones , Ratones Mutantes , Células TH1/inmunología , Células Th2/inmunología
7.
Mol Cell Proteomics ; 11(1): M111.014159, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21989018

RESUMEN

Skeletal growth by endochondral ossification involves tightly coordinated chondrocyte differentiation that creates reserve, proliferating, prehypertrophic, and hypertrophic cartilage zones in the growth plate. Many human skeletal disorders result from mutations in cartilage extracellular matrix (ECM) components that compromise both ECM architecture and chondrocyte function. Understanding normal cartilage development, composition, and structure is therefore vital to unravel these disease mechanisms. To study this intricate process in vivo by proteomics, we analyzed mouse femoral head cartilage at developmental stages enriched in either immature chondrocytes or maturing/hypertrophic chondrocytes (post-natal days 3 and 21, respectively). Using LTQ-Orbitrap tandem mass spectrometry, we identified 703 cartilage proteins. Differentially abundant proteins (q < 0.01) included prototypic markers for both early and late chondrocyte differentiation (epiphycan and collagen X, respectively) and novel ECM and cell adhesion proteins with no previously described roles in cartilage development (tenascin X, vitrin, Urb, emilin-1, and the sushi repeat-containing proteins SRPX and SRPX2). Meta-analysis of cartilage development in vivo and an in vitro chondrocyte culture model (Wilson, R., Diseberg, A. F., Gordon, L., Zivkovic, S., Tatarczuch, L., Mackie, E. J., Gorman, J. J., and Bateman, J. F. (2010) Comprehensive profiling of cartilage extracellular matrix formation and maturation using sequential extraction and label-free quantitative proteomics. Mol. Cell. Proteomics 9, 1296-1313) identified components involved in both systems, such as Urb, and components with specific roles in vivo, including vitrin and CILP-2 (cartilage intermediate layer protein-2). Immunolocalization of Urb, vitrin, and CILP-2 indicated specific roles at different maturation stages. In addition to ECM-related changes, we provide the first biochemical evidence of changing endoplasmic reticulum function during cartilage development. Although the multifunctional chaperone BiP was not differentially expressed, enzymes and chaperones required specifically for collagen biosynthesis, such as the prolyl 3-hydroxylase 1, cartilage-associated protein, and peptidyl prolyl cis-trans isomerase B complex, were down-regulated during maturation. Conversely, the lumenal proteins calumenin, reticulocalbin-1, and reticulocalbin-2 were significantly increased, signifying a shift toward calcium binding functions. This first proteomic analysis of cartilage development in vivo reveals the breadth of protein expression changes during chondrocyte maturation and ECM remodeling in the mouse femoral head.


Asunto(s)
Cartílago/metabolismo , Condrocitos/metabolismo , Matriz Extracelular/metabolismo , Animales , Cartílago/crecimiento & desarrollo , Ratones , Ratones Endogámicos C57BL , Proteoma
8.
J Biol Chem ; 286(7): 5708-16, 2011 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-21131363

RESUMEN

Identification and clearance of apoptotic cells prevents the release of harmful cell contents thereby suppressing inflammation and autoimmune reactions. Highly conserved annexins may modulate the phagocytic cell removal by acting as bridging molecules to phosphatidylserine, a characteristic phagocytosis signal of dying cells. In this study five members of the structurally and functionally related annexin family were characterized for their capacity to interact with phosphatidylserine and dying cells. The results showed that AnxA3, AnxA4, AnxA13, and the already described interaction partner AnxA5 can bind to phosphatidylserine and apoptotic cells, whereas AnxA8 lacks this ability. Sequence alignment experiments located the essential amino residues for the recognition of surface exposed phosphatidylserine within the calcium binding motifs common to all annexins. These amino acid residues were missing in the evolutionary young AnxA8 and when they were reintroduced by site directed mutagenesis AnxA8 gains the capability to interact with phosphatidylserine containing liposomes and apoptotic cells. By defining the evolutionary conserved amino acid residues mediating phosphatidylserine binding of annexins we show that the recognition of dying cells represent a common feature of most annexins. Hence, the individual annexin repertoire bound to the cell surface of dying cells may fulfil opsonin-like function in cell death recognition.


Asunto(s)
Anexinas/metabolismo , Apoptosis/fisiología , Calcio/metabolismo , Fosfatidilserinas/metabolismo , Transducción de Señal/fisiología , Secuencias de Aminoácidos , Animales , Anexinas/química , Anexinas/genética , Evolución Molecular , Ratones , Células 3T3 NIH , Fosfatidilserinas/química , Fosfatidilserinas/genética , Unión Proteica
9.
J Bone Miner Res ; 25(6): 1267-81, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20200945

RESUMEN

Axial growth of long bones occurs through a coordinated process of growth plate chondrocyte proliferation and differentiation. This maturation of chondrocytes is reflected in a zonal change in gene expression and cell morphology from resting to proliferative, prehypertrophic, and hypertrophic chondrocytes of the growth plate followed by ossification. A major experimental limitation in understanding growth plate biology and pathophysiology is the lack of a robust technique to isolate cells from the different zones, particularly from small animals. Here, we report on a new strategy for separating distinct chondrocyte populations from mouse growth plates. By transcriptome profiling of microdissected zones of growth plates, we identified novel, zone-specific cell surface markers and used these for flow cytometry and immunomagnetic cell separation to quantify, enrich, and characterize chondrocytes populations with respect to their differentiation status. This approach provides a novel platform to study cartilage development and characterize mouse growth plate chondrocytes to reveal unique cellular phenotypes of the distinct subpopulations within the growth plate.


Asunto(s)
Diferenciación Celular , Separación Celular/métodos , Condrocitos/citología , Citometría de Flujo/métodos , Placa de Crecimiento/citología , Animales , Antígenos de Superficie/metabolismo , Biomarcadores/metabolismo , Muerte Celular , Membrana Celular/metabolismo , Condrocitos/metabolismo , Placa de Crecimiento/crecimiento & desarrollo , Separación Inmunomagnética , Ratones , Ratones Endogámicos C57BL , Microesferas , Especificidad de Órganos , Fenotipo , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...