Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
NPJ Parkinsons Dis ; 8(1): 103, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35948563

RESUMEN

Several mutations that cause Parkinson's disease (PD) have been identified over the past decade. These account for 15-25% of PD cases; the rest of the cases are considered sporadic. Currently, it is accepted that PD is not a single monolithic disease but rather a constellation of diseases with some common phenotypes. While rodent models exist for some of the PD-causing mutations, research on the sporadic forms of PD is lagging due to a lack of cellular models. In our study, we differentiated PD patient-derived dopaminergic (DA) neurons from the induced pluripotent stem cells (iPSCs) of several PD-causing mutations as well as from sporadic PD patients. Strikingly, we observed a common neurophysiological phenotype: neurons derived from PD patients had a severe reduction in the rate of synaptic currents compared to those derived from healthy controls. While the relationship between mutations in genes such as the SNCA and LRRK2 and a reduction in synaptic transmission has been investigated before, here we show evidence that the pathogenesis of the synapses in neurons is a general phenotype in PD. Analysis of RNA sequencing results displayed changes in gene expression in different synaptic mechanisms as well as other affected pathways such as extracellular matrix-related pathways. Some of these dysregulated pathways are common to all PD patients (monogenic or idiopathic). Our data, therefore, show changes that are central and convergent to PD and suggest a strong involvement of the tetra-partite synapse in PD pathophysiology.

2.
Mol Psychiatry ; 26(12): 7498-7508, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34535765

RESUMEN

Mutations in the IQSEC2 gene are associated with drug-resistant, multifocal infantile and childhood epilepsy; autism; and severe intellectual disability (ID). We used induced pluripotent stem cell (iPSC) technology to obtain hippocampal neurons to investigate the neuropathology of IQSEC2-mediated disease. The neurons were characterized at three-time points during differentiation to assess developmental progression. We showed that immature IQSEC2 mutant dentate gyrus (DG) granule neurons were extremely hyperexcitable, exhibiting increased sodium and potassium currents compared to those of CRISPR-Cas9-corrected isogenic controls, and displayed dysregulation of genes involved in differentiation and development. Immature IQSEC2 mutant cultured neurons exhibited a marked reduction in the number of inhibitory neurons, which contributed further to hyperexcitability. As the mutant neurons aged, they became hypoexcitable, exhibiting reduced sodium and potassium currents and a reduction in the rate of synaptic and network activity, and showed dysregulation of genes involved in synaptic transmission and neuronal differentiation. Mature IQSEC2 mutant neurons were less viable than wild-type mature neurons and had reduced expression of surface AMPA receptors. Our studies provide mechanistic insights into severe infantile epilepsy and neurodevelopmental delay associated with this mutation and present a human model for studying IQSEC2 mutations in vitro.


Asunto(s)
Trastorno Autístico , Epilepsia , Discapacidad Intelectual , Anciano , Trastorno Autístico/genética , Niño , Epilepsia/genética , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Discapacidad Intelectual/genética , Mutación/genética , Neuronas/metabolismo , Transmisión Sináptica/genética
3.
Biol Psychiatry ; 88(2): 150-158, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32278494

RESUMEN

BACKGROUND: We recently reported a hyperexcitability phenotype displayed in dentate gyrus granule neurons derived from patients with bipolar disorder (BD) as well as a hyperexcitability that appeared only in CA3 pyramidal hippocampal neurons that were derived from patients with BD who responded to lithium treatment (lithium responders) and not in CA3 pyramidal hippocampal neurons that were derived from patients with BD who did not respond to lithium (nonresponders). METHODS: Here we used our measurements of currents in neurons derived from 4 control subjects, 3 patients with BD who were lithium responders, and 3 patients with BD who were nonresponders. We changed the conductances of simulated dentate gyrus and CA3 hippocampal neurons according to our measurements to derive a numerical simulation for BD neurons. RESULTS: The computationally simulated BD dentate gyrus neurons had a hyperexcitability phenotype similar to the experimental results. Only the simulated BD CA3 neurons derived from lithium responder patients were hyperexcitable. Interestingly, our computational model captured a physiological instability intrinsic to hippocampal neurons that were derived from nonresponder patients that we also observed when re-examining our experimental results. This instability was caused by a drastic reduction in the sodium current, accompanied by an increase in the amplitude of several potassium currents. These baseline alterations caused nonresponder BD hippocampal neurons to drastically shift their excitability with small changes to their sodium currents, alternating between hyperexcitable and hypoexcitable states. CONCLUSIONS: Our computational model of BD hippocampal neurons that was based on our measurements reproduced the experimental phenotypes of hyperexcitability and physiological instability. We hypothesize that the physiological instability phenotype strongly contributes to affective lability in patients with BD.


Asunto(s)
Trastorno Bipolar , Litio , Trastorno Bipolar/tratamiento farmacológico , Giro Dentado , Hipocampo , Humanos , Neuronas , Células Piramidales
4.
Biol Psychiatry ; 88(2): 139-149, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31732108

RESUMEN

BACKGROUND: Approximately 1 in every 50 to 100 people is affected with bipolar disorder (BD), making this disease a major economic burden. The introduction of induced pluripotent stem cell methodology enabled better modeling of this disorder. METHODS: Having previously studied the phenotype of dentate gyrus granule neurons, we turned our attention to studying the phenotype of CA3 hippocampal pyramidal neurons of 6 patients with BD compared with 4 control individuals. We used patch clamp and quantitative polymerase chain reaction to measure electrophysiological features and RNA expression by specific channel genes. RESULTS: We found that BD CA3 neurons were hyperexcitable only when they were derived from patients who responded to lithium; they featured sustained activity with large current injections and a large, fast after-hyperpolarization, similar to what we previously reported in dentate gyrus neurons. The higher amplitudes and faster kinetics of fast potassium currents correlated with this hyperexcitability. Further supporting the involvement of potassium currents, we observed an overexpression of KCNC1 and KCNC2 in hippocampal neurons derived from lithium responders. Applying specific potassium channel blockers diminished the hyperexcitability. Long-term lithium treatment decreased the hyperexcitability observed in the CA3 neurons derived from lithium responders while increasing sodium currents and reducing fast potassium currents. When differentiating this cohort into spinal motor neurons, we did not observe any changes in the excitability of BD motor neurons compared with control motor neurons. CONCLUSIONS: The hyperexcitability of BD neurons is neuronal type specific with the involvement of altered potassium currents that allow for a sustained, continued firing activity.


Asunto(s)
Trastorno Bipolar , Trastorno Bipolar/tratamiento farmacológico , Giro Dentado , Hipocampo , Humanos , Neuronas , Técnicas de Placa-Clamp , Células Piramidales , Canales de Potasio Shaw
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...