Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(5): 4099-4110, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38226462

RESUMEN

Aqueous n-octanol (n = 1, 2, 3, and 4) mixtures from the octanol rich side are studied by X-ray scattering and computer simulation, with a focus on structural changes, particularly in what concerns the hydration of the hydroxyl-group aggregated chain-like structures, under the influence of various branching of the alkyl tails. Previous studies have indicated that hydroxyl-group chain-cluster formation is hindered in proportion to the branching number. Here, water mole fractions up to x = 0.2 are examined, i.e. up to the miscibility limit. It is found that water molecules within the hydroxyl-chain domains participate in the chain formations in a different manner for 1-octanol and the branched octanols. The hydration of the octanol hydroxyl chains is confirmed by the shifting of the scattering pre-peak position kPP to smaller values, both from measured and simulated X-ray scattering intensities, which corresponds to an increased size of the clusters. Experimental pre-peak amplitudes are seen to increase with increasing water content for 1-octanol, while this trend is reversed in all branched octanols, with the amplitudes decreasing with the increase of the branching number. Conjecturing that the amplitudes of pre-peaks are related to the density of the corresponding aggregates, these results are interpreted as water breaking large OH hydroxyl chains in 1-octanol, hence increasing the density of aggregates, while enhancing hydroxyl aggregates in branched alcohols by inserting itself into the OH chains. The analysis of the cluster distributions from computer simulations provide more details on the role of water. For cluster sizes smaller than dc = 2π/kPP, water is found to always play the role of a structure enforcer for all n-octanols, while for clusters of size dc water is always a destructor. For cluster sizes larger than dc, the role of water differs from 1-octanol and the branched ones: it acts as a structure maker or breaker in inverse proportion to the hindering of OH hydroxyl chain structures arising from the topology of the alkyl tails (branched or not).

2.
Gels ; 9(9)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37754377

RESUMEN

High-performance greases typically consist of a base oil and polyurea as a thickener material. To date, few alternatives to polyureas have been investigated. Polyesters could be one such alternative; however, little is known about the gelation of such polyesters because, unlike polyureas, they cannot form hydrogen bonds between the polymer chains. Here, we present studies on the gel formation of a polyester based thickener poly(hexane dodecanoate) with 1-octanol endgroups in three different base oils, i.e., a mineral oil (Brightstock 150), a synthetic Polyalphaolefin (Spectrasyn 40) and castor oil (85 to 90 wt.% ricinoleic acid triglyceride). Small- and wide-angle X-ray scattering measurements indicate a strong interaction of the polyester with castor oil and an increase in the crystalline fraction, with an increasing polymer amount from 5 to 40 wt.%. Moreover, infrared analysis of the polyester in castor oil showed gel formation at a minimum concentration of 20 wt.%. The strong interaction of the polyester with castor oil compared to the other two base oils led to an increase in the yield point γF as a measure of the mechanical stability of the gel, which was determined to be 5.9% compared to 0.8% and 1.0% in Brightstock and Spectrasyn, respectively.

3.
ACS Energy Lett ; 8(8): 3476-3484, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37588018

RESUMEN

Garnet solid-electrolyte-based Li-metal batteries can be used in energy storage devices with high energy densities and thermal stability. However, the tendency of garnets to form lithium hydroxide and carbonate on the surface in an ambient atmosphere poses significant processing challenges. In this work, the decomposition of surface layers under various gas environments is studied by using two surface-sensitive techniques, near-ambient-pressure X-ray photoelectron spectroscopy and grazing incidence X-ray diffraction. It is found that heating to 500 °C under an oxygen atmosphere (of 1 mbar and above) leads to a clean garnet surface, whereas low oxygen partial pressures (i.e., in argon or vacuum) lead to additional graphitic carbon deposits. The clean surface of garnets reacts directly with moisture and carbon dioxide below 400 and 500 °C, respectively. This suggests that additional CO2 concentration controls are needed for the handling of garnets. By heating under O2 along with avoiding H2O and CO2, symmetric cells with less than 10 Ωcm2 interface resistance are prepared without the use of any interlayers; plating currents of >1 mA cm-2 without dendrite initiation are demonstrated.

4.
Nat Commun ; 14(1): 4200, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37452021

RESUMEN

Responsive metal-organic frameworks (MOFs) that display sigmoidal gas sorption isotherms triggered by discrete gas pressure-induced structural transformations are highly promising materials for energy related applications. However, their lack of transportability via continuous flow hinders their application in systems and designs that rely on liquid agents. We herein present examples of responsive liquid systems which exhibit a breathing behaviour and show step-shaped gas sorption isotherms, akin to the distinct oxygen saturation curve of haemoglobin in blood. Dispersions of flexible MOF nanocrystals in a size-excluded silicone oil form stable porous liquids exhibiting gated uptake for CO2, propane and propylene, as characterized by sigmoidal gas sorption isotherms with distinct transition steps. In situ X-ray diffraction studies show that the sigmoidal gas sorption curve is caused by a narrow pore to large pore phase transformation of the flexible MOF nanocrystals, which respond to gas pressure despite being dispersed in silicone oil. Given the established flexible nature and tunability of a range of MOFs, these results herald the advent of breathing porous liquids whose sorption properties can be tuned rationally for a variety of technological applications.


Asunto(s)
Estructuras Metalorgánicas , Nanopartículas , Porosidad , Transporte Biológico , Propano , Aceites de Silicona
5.
J Synchrotron Radiat ; 30(Pt 4): 822-830, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37159289

RESUMEN

A von Hámos spectrometer has been implemented in the vacuum interaction chamber 1 of the High Energy Density instrument at the European X-ray Free-Electron Laser facility. This setup is dedicated, but not necessarily limited, to X-ray spectroscopy measurements of samples exposed to static compression using a diamond anvil cell. Si and Ge analyser crystals with different orientations are available for this setup, covering the hard X-ray energy regime with a sub-eV energy resolution. The setup was commissioned by measuring various emission spectra of free-standing metal foils and oxide samples in the energy range between 6 and 11 keV as well as low momentum-transfer inelastic X-ray scattering from a diamond sample. Its capabilities to study samples at extreme pressures and temperatures have been demonstrated by measuring the electronic spin-state changes of (Fe0.5Mg0.5)O, contained in a diamond anvil cell and pressurized to 100 GPa, via monitoring the Fe Kß fluorescence with a set of four Si(531) analyser crystals at close to melting temperatures. The efficiency and signal-to-noise ratio of the spectrometer enables valence-to-core emission signals to be studied and single pulse X-ray emission from samples in a diamond anvil cell to be measured, opening new perspectives for spectroscopy in extreme conditions research.


Asunto(s)
Diamante , Electrones , Diamante/química , Radiografía , Rayos X , Rayos Láser
6.
Biophys J ; 121(20): 3811-3825, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36110043

RESUMEN

In this paper, we studied fusogenic peptides of class I-III fusion proteins, which are relevant to membrane fusion for certain enveloped viruses, in contact with model lipid membranes. We resolved the vertical structure and examined the adsorption or penetration behavior of the fusogenic peptides at phospholipid Langmuir monolayers with different initial surface pressures with x-ray reflectometry. We show that the fusion loops of tick-borne encephalitis virus (TBEV) glycoprotein E and vesicular stomatitis virus (VSV) G-protein are not able to insert deeply into model lipid membranes, as they adsorbed mainly underneath the headgroups with only limited penetration depths into the lipid films. In contrast, we observed that the hemagglutinin 2 fusion peptide (HA2-FP) and the VSV-transmembrane domain (VSV-TMD) can penetrate deeply into the membranes. However, in the case of VSV-TMD, the penetration was suppressed already at low surface pressures, whereas HA2-FP was able to insert even into highly compressed films. Membrane fusion is accompanied by drastic changes of the membrane curvature. To investigate how the peptides affect the curvature of model lipid membranes, we examined the effect of the fusogenic peptides on the equilibration of cubic monoolein structures after a phase transition from a lamellar state induced by an abrupt hydrostatic pressure reduction. We monitored this process in presence and absence of the peptides with small-angle x-ray scattering and found that HA2-FP and VSV-TMD drastically accelerate the equilibration, while the fusion loops of TBEV and VSV stabilize the swollen state of the lipid structures. In this work, we show that the class I fusion peptide of HA2 penetrates deeply into the hydrophobic region of membranes and is able to promote and accelerate the formation of negative curvature. In contrast, we found that the class II and III fusion loops of TBEV and VSV tend to counteract negative membrane curvature.


Asunto(s)
Hemaglutininas , Fusión de Membrana , Péptidos/química , Transición de Fase , Fosfolípidos
7.
Phys Chem Chem Phys ; 24(26): 16075-16084, 2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35735165

RESUMEN

Atomistic details about the hydration of ions in aqueous solutions are still debated due to the disordered and statistical nature of the hydration process. However, many processes from biology, physical chemistry to materials sciences rely on the complex interplay between solute and solvent. Oxygen K-edge X-ray excitation spectra provide a sensitive probe of the local atomic and electronic surrounding of the excited sites. We used ab initio molecular dynamics simulations together with extensive spectrum calculations to relate the features found in experimental oxygen K-edge spectra of a concentration series of aqueous NaCl with the induced structural changes upon solvation of the salt and distill the spectral fingerprints of the first hydration shells around the Na+- and Cl--ions. By this combined experimental and theoretical approach, we find the strongest spectral changes to indeed result from the first hydration shells of both ions and relate the observed shift of spectral weight from the post- to the main-edge to the origin of the post-edge as a shape resonance.


Asunto(s)
Cloruro de Sodio , Agua , Iones , Oxígeno , Soluciones/química , Agua/química
8.
Phys Chem Chem Phys ; 23(42): 24211-24221, 2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34693949

RESUMEN

The understanding of the microstructure of associated liquids promoted by hydrogen-bonding and constrained by steric hindrance is highly relevant in chemistry, physics, biology and for many aspects of daily life. In this study we use a combination of X-ray diffraction, dielectric spectroscopy and molecular dynamics simulations to reveal temperature induced changes in the microstructure of different octanol isomers, i.e., linear 1-octanol and branched 2-, 3- and 4-octanol. In all octanols, the hydroxyl groups form the basis of chain-, cyclic- or loop-like bonded structures that are separated by outwardly directed alkyl chains. This clustering is analyzed through the scattering pre-peaks observed from X-ray scattering and simulations. The charge ordering which pilots OH aggregation can be linked to the strength of the Debye process observed in dielectric spectroscopy. Interestingly, all methods used here converge to the same interpretation: as one moves from 1-octanol to the branched octanols, the cluster structure evolves from loose large aggregates to a larger number of smaller, tighter aggregates. All alcohols exhibit a peculiar temperature dependence of both the pre-peak and Debye process, which can be understood as a change in microstructure promoted by chain association with increased chain length possibly assisted by ring-opening effects. All these results tend to support the intuitive picture of the entropic constraint provided by branching through the alkyl tails and highlight its capital entropic role in supramolecular assembly.

9.
Phys Chem Chem Phys ; 23(27): 14845-14856, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34223594

RESUMEN

Knowledge of the microscopic structure of fluids and changes thereof with pressure and temperature is important for the understanding of chemistry and geochemical processes. In this work we investigate the influence of sodium chloride on the hydrogen-bond network in aqueous solution up to supercritical conditions. A combination of in situ X-ray Raman scattering and ab initio molecular dynamics simulations is used to probe the oxygen K-edge of the alkali halide aqueous solution in order to obtain unique information about the oxygen's local coordination around the ions, e.g. solvation-shell structure and the influence of ion pairing. The measured spectra exhibit systematic temperature dependent changes, which are entirely reproduced by calculations on the basis of structural snapshots obtained via ab initio molecular dynamics simulations. Analysis of the simulated trajectories allowed us to extract detailed structural information. This combined analysis reveals a net destabilizing effect of the dissolved ions which is reduced with rising temperature. The observed increased formation of contact ion pairs and occurrence of larger polyatomic clusters at higher temperatures can be identified as a driving force behind the increasing structural similarity between the salt solution and pure water at elevated temperatures and pressures with drawback on the role of hydrogen bonding in the hot fluid. We discuss our findings in view of recent results on hot NaOH and HCl aqueous fluids and emphasize the importance of ion pairing in the interpretation of the microscopic structure of water.

10.
Nat Commun ; 12(1): 4097, 2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34215743

RESUMEN

Stimuli-responsive flexible metal-organic frameworks (MOFs) remain at the forefront of porous materials research due to their enormous potential for various technological applications. Here, we introduce the concept of frustrated flexibility in MOFs, which arises from an incompatibility of intra-framework dispersion forces with the geometrical constraints of the inorganic building units. Controlled by appropriate linker functionalization with dispersion energy donating alkoxy groups, this approach results in a series of MOFs exhibiting a new type of guest- and temperature-responsive structural flexibility characterized by reversible loss and recovery of crystalline order under full retention of framework connectivity and topology. The stimuli-dependent phase change of the frustrated MOFs involves non-correlated deformations of their inorganic building unit, as probed by a combination of global and local structure techniques together with computer simulations. Frustrated flexibility may be a common phenomenon in MOF structures, which are commonly regarded as rigid, and thus may be of crucial importance for the performance of these materials in various applications.

11.
Nanotechnology ; 32(20): 205705, 2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-33578397

RESUMEN

We investigate the strain evolution and relaxation process as function of increasing lattice mismatch between the GaAs core and surrounding In x Ga1-x As shell in core-shell nanowire heterostructures grown on Si(111) substrates. The dimensions of the core and shell are kept constant whereas the indium concentration inside the shell is varied. Measuring the [Formula: see text] and [Formula: see text] in-plane Bragg reflections normal to the nanowire side edges and side facets, we observe a transition from elastic to plastic strain release for a shell indium content x > 0.5. Above the onset of plastic strain relaxation, indium rich mounds and an indium poor coherent shell grow simultaneously around the GaAs core. Mound formation was observed for indium contents x = 0.5 and 0.6 by scanning electron microscopy. Considering both the measured radial reflections and the axial 111 Bragg reflection, the 3D strain variation was extracted separately for the core and the In x Ga1-x As shell.

12.
J Phys Chem B ; 124(38): 8358-8371, 2020 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-32856907

RESUMEN

The X-ray scattering intensities (I(k)) of linear alkanols OH(CH2)n-1CH3 obtained from experiments (methanol to 1-undecanol) and computer simulations (methanol to 1-nonanol) of different force field models are comparatively studied particularly in order to explain the origin and the properties of the scattering pre-peak in the k-vector range 0.3-1 Å-1. The experimental I(k) values show two apparent features: the pre-peak position kP decreases with increasing n, and more intriguingly, the amplitude AP goes through a maximum at 1-butanol (n = 4). The first feature is well reproduced by all force-field models, while the second shows strong model dependence. The simulations reveal various shapes of clusters of the hydroxyl head-group from n>2. kP is directly related to the size of the meta-objects corresponding to such clusters surrounded by their alkyl tails. The explanation of the AP turnover at n = 4 is more involved in terms of cancellations of atom-atom structure factor S(k) contributions related to domain ordering. The flexibility of the alkyl tails tends to reduce the cross contributions, thus revealing the crucial importance of this parameter in the models. Force fields with all-atom representation are less successful in reproducing the pre-peak features for smaller alkanols, n<6, possibly because they blur the charge ordering process since all atoms bear partial charges. The analysis clearly shows that it is not possible to obtain a model-free explanation of the features of I(k).

13.
Phys Chem Chem Phys ; 22(20): 11614-11624, 2020 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-32405633

RESUMEN

The hydration and hydrogen-bond topology of small water solvated molecules such as the naturally occurring organic osmolytes trimethylamine N-oxide (TMAO) and urea are under intense investigation. We aim at furthering the understanding of this complex hydration by combining experimental oxygen K-edge excitation spectra with results from spectra calculated via the Bethe-Salpeter equation based on structures obtained from ab initio molecular dynamics simulations. Comparison of experimental and calculated spectra allows us to extract detailed information about the immediate surrounding of the solute molecules in the solvated state. We quantify and localize the influence of the solute on the hydrogen bond network of the water solvent and find spectroscopic fingerprints of a clear directional asymmetry around TMAO with strong and local kosmotropic influence around TMAO's NO head group and slight chaotropic influence around the hydrophobic methyl groups. The influence of urea on the local water network is qualitatively similar to that of TMAO but weaker in magnitude. The strongest influence of both molecules on the shape of the oxygen K-edge spectra is found in the first hydration shells.

14.
J Synchrotron Radiat ; 27(Pt 2): 414-424, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32153280

RESUMEN

A portable IR fiber laser-heating system, optimized for X-ray emission spectroscopy (XES) and nuclear inelastic scattering (NIS) spectroscopy with signal collection through the radial opening of diamond anvil cells near 90°with respect to the incident X-ray beam, is presented. The system offers double-sided on-axis heating by a single laser source and zero attenuation of incoming X-rays other than by the high-pressure environment. A description of the system, which has been tested for pressures above 100 GPa and temperatures up to 3000 K, is given. The XES spectra of laser-heated Mg0.67Fe0.33O demonstrate the potential to map the iron spin state in the pressure-temperature range of the Earth's lower mantle, and the NIS spectra of laser-heated FeSi give access to the sound velocity of this candidate of a phase inside the Earth's core. This portable system represents one of the few bridges across the gap between laser heating and high-resolution X-ray spectroscopies with signal collection near 90°.

15.
J Chem Phys ; 152(3): 034503, 2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-31968976

RESUMEN

In this work, trimethoxyboroxine (TMB) is identified as a small-molecule glass former. In its viscous liquid as well as glassy states, static and dynamic properties of TMB are explored using various techniques. It is found that, on average, the structure of the condensed TMB molecules deviates from threefold symmetry so that TMB's electric dipole moment is nonzero, thus rendering broadband dielectric spectroscopy applicable. This method reveals the super-Arrhenius dynamics that characterizes TMB above its glass transition, which occurs at about 204 K. To extend the temperature range in which the molecular dynamics can be studied, 11B nuclear magnetic resonance experiments are additionally carried out on rotating and stationary samples: Exploiting dynamic second-order shifts, spin-relaxation times, line shape effects, as well as stimulated-echo and two-dimensional exchange spectroscopy, a coherent picture regarding the dynamics of this glass former is gained.

16.
Biophys Chem ; 253: 106222, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31421516

RESUMEN

We present measurements, molecular dynamics (MD) simulations, and predictions using Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) of the density of aqueous solutions in a pressure range from 1 bar to 5000 bar, a pressure regime that is highly relevant for both biochemical applications and the fundamental understanding of solvation. The accurate determination of density data of pressurized solutions remains challenging. We determined relative density changes from the variations in X-ray absorption through the sample and developed a new water parameter set for PC-SAFT modeling that is appropriate for high pressure conditions in the kilobar regime. As a showcase, we studied trimethylamine N-oxide (TMAO) solutions and demonstrated that their compressibility decreases with the TMAO content. This result is linked to the stabilizing effect of TMAO on the local H-bond network of water. Experiments and calculations, which represent two independent methods, are in very good agreement and are in accordance with results of force field molecular dynamics simulations of the same systems.


Asunto(s)
Metilaminas/química , Simulación de Dinámica Molecular , Enlace de Hidrógeno , Modelos Estadísticos , Soluciones
17.
Biophys Chem ; 252: 106210, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31265976

RESUMEN

In this work, the effect of cholesterol on the pressure response of solid-supported phospholipid multilayers is analyzed. It is shown that DMPC multilayers become highly pressure-responsive by the incorporation of low amounts of cholesterol, resulting in a strong pressure-induced expansion of the bilayer spacing. This is accompanied by a high tendency of the multilayer system to detach from the substrate. Increasing the cholesterol concentration reduces the pressure-induced expansion and the membrane structure remains largely unchanged upon pressurization, consequently the stability of the multilayers improves. For a determination of the influence of the substrate, the pressure-dependent behavior of multilayers is compared to that of solid-supported bilayers and multi-lamellar vesicles in bulk solution. While single-supported bilayers remain largely unaffected by external pressure independent of their cholesterol content, multi-lamellar vesicles and multilayers behave similarly.


Asunto(s)
Colesterol/química , Dimiristoilfosfatidilcolina/química , Membrana Dobles de Lípidos/química , Presión , Dispersión del Ángulo Pequeño , Difracción de Rayos X
18.
Nat Commun ; 10(1): 346, 2019 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-30664645

RESUMEN

Flexible metal-organic frameworks (MOFs) are structurally flexible, porous, crystalline solids that show a structural transition in response to a stimulus. If MOF-based solid-state and microelectronic devices are to be capable of leveraging such structural flexibility, then the integration of MOF thin films into a device configuration is crucial. Here we report the targeted and precise anchoring of Cu-based alkylether-functionalised layered-pillared MOF crystallites onto substrates via stepwise liquid-phase epitaxy. The structural transformation during methanol sorption is monitored by in-situ grazing incidence X-ray diffraction. Interestingly, spatially-controlled anchoring of the flexible MOFs on the surface induces a distinct structural responsiveness which is different from the bulk powder and can be systematically controlled by varying the crystallite characteristics, for instance dimensions and orientation. This fundamental understanding of thin-film flexibility is of paramount importance for the rational design of MOF-based devices utilising the structural flexibility in specific applications such as selective sensors.

19.
Biophys J ; 114(5): 1080-1090, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29539395

RESUMEN

For over 50 years, it has been known that the mitosis of eukaryotic cells is inhibited already at high hydrostatic pressure conditions of 30 MPa. This effect has been attributed to the disorganization of microtubules, the main component of the spindle apparatus. However, the structural details of the depolymerization and the origin of the pressure sensitivity have remained elusive. It has also been a puzzle how complex organisms could still successfully inhabit extreme high-pressure environments such as those encountered in the depth of oceans. We studied the pressure stability of microtubules at different structural levels and for distinct dynamic states using high-pressure Fourier-transform infrared spectroscopy and Synchrotron small-angle x-ray scattering. We show that microtubules are hardly stable under abyssal conditions, where pressures up to 100 MPa are reached. This high-pressure sensitivity can be mainly attributed to the internal voids and packing defects in the microtubules. In particular, we show that lateral and longitudinal contacts feature different pressure stabilities, and they define also the pressure stability of tubulin bundles. The intactness of both contact types is necessary for the functionality of microtubules in vivo. Despite being known to dynamically stabilize microtubules and prevent their depolymerization, we found that the anti-cancer drug taxol and the accessory protein MAP2c decrease the pressure stability of microtubule protofilaments. Moreover, we demonstrate that the cellular environment itself is a crowded place and accessory proteins can increase the pressure stability of microtubules and accelerate their otherwise highly pressure-sensitive de novo formation.


Asunto(s)
Microtúbulos/metabolismo , Presión , Animales , Encéfalo/citología , Bovinos , Cinética , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/metabolismo , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Ratas
20.
Phys Chem Chem Phys ; 20(5): 3514-3522, 2018 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-29336441

RESUMEN

Calmodulin (CaM) is a Ca2+ sensor and mediates Ca2+ signaling through binding of numerous target ligands. The binding of ligands by Ca2+-saturated CaM (holo-CaM) is governed by attractive hydrophobic and electrostatic interactions that are weakened under high pressure in aqueous solutions. Moreover, the potential formation of void volumes upon ligand binding creates a further source of pressure sensitivity. Hence, high pressure is a suitable thermodynamic variable to probe protein-ligand interactions. In this study, we compare the binding of two different ligands to holo-CaM as a function of pressure by using X-ray and neutron scattering techniques. The two ligands are the farnesylated hypervariable region (HVR) of the K-Ras4B protein, which is a natural binding partner of holo-CaM, and the antagonist trifluoperazine (TFP), which is known to inhibit holo-CaM activity. From small-angle X-ray scattering experiments performed up to 3000 bar, we observe a pressure-induced partial unfolding of the free holo-CaM in the absence of ligands, where the two lobes of the dumbbell-shaped protein are slightly swelled. In contrast, upon binding TFP, holo-CaM forms a closed globular conformation, which is pressure stable at least up to 3000 bar. The HVR of K-Ras4B shows a different binding behavior, and the data suggest the dissociation of the holo-CaM/HVR complex under high pressure, probably due to a less dense protein contact of the HVR as compared to TFP. The elastic incoherent neutron scattering experiments corroborate these findings. Below 2000 bar, pressure induces enhanced atomic fluctuations in both holo-CaM/ligand complexes, but those of the holo-CaM/HVR complex seem to be larger. Thus, the inhibition of holo-CaM by TFP is supported by a low-volume ligand binding, albeit this is not associated with a rigidification of the complex structure on the sub-ns Å-scale.


Asunto(s)
Calmodulina/química , Ligandos , Secuencia de Aminoácidos , Calcio/química , Calcio/metabolismo , Calmodulina/metabolismo , Difracción de Neutrones , Presión , Unión Proteica , Dispersión del Ángulo Pequeño , Trifluoperazina/química , Trifluoperazina/metabolismo , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...