Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brain Res ; 1647: 57-64, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27155453

RESUMEN

Inclusions of Tar DNA- binding protein 43 (TDP-43) are a pathological hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with TDP-43-positive inclusions (FTLD-TDP). Pathological TDP-43 exhibits the disease-specific biochemical signatures, which include its ubiquitination, phosphorylation and truncation. Recently, we demonstrated that the extreme N-terminus of TDP-43 regulates formation of abnormal cytoplasmic TDP-43 aggregation in cultured cells and primary neurons. However, it remained unclear whether this N-terminal domain mediates TDP-43 aggregation and the associated toxicity in vivo. To investigate this, we expressed a GFP-tagged TDP-43 with a nuclear localization signal mutation (GFP-TDP-43NLSm) and a truncated form without the extreme N-terminus (GFP-TDP-4310-414-NLSm) by adeno-associated viral (AAV) vectors in mouse primary cortical neurons and murine central nervous system. Compared to neurons containing GFP alone, expression of GFP-TDP-43NLSm resulted in the formation of ubiquitin-positive cytoplasmic inclusions and activation of caspase-3, an indicator of cell death. Moreover, mice expressing GFP-TDP-43NLSm proteins show reactive gliosis and develop neurological abnormalities. However, by deletion of TDP-43's extreme N-terminus, these pathological alterations can be abrogated. Together, our study provides further evidence confirming the critical role of the extreme N-terminus of TDP-43 in regulating protein structure as well as mediating toxicity associated with its aggregation. This article is part of a Special Issue entitled SI:RNA Metabolism in Disease.


Asunto(s)
Corteza Cerebral/metabolismo , Proteínas de Unión al ADN/metabolismo , Neuronas/metabolismo , Animales , Caspasa 3/metabolismo , Muerte Celular , Células Cultivadas , Corteza Cerebral/patología , Proteínas de Unión al ADN/genética , Gliosis/metabolismo , Cuerpos de Inclusión/metabolismo , Ratones , Actividad Motora , Neuronas/patología
2.
Nat Neurosci ; 18(8): 1175-82, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26192745

RESUMEN

Increasing evidence suggests that defective RNA processing contributes to the development of amyotrophic lateral sclerosis (ALS). This may be especially true for ALS caused by a repeat expansion in C9orf72 (c9ALS), in which the accumulation of RNA foci and dipeptide-repeat proteins are expected to modify RNA metabolism. We report extensive alternative splicing (AS) and alternative polyadenylation (APA) defects in the cerebellum of c9ALS subjects (8,224 AS and 1,437 APA), including changes in ALS-associated genes (for example, ATXN2 and FUS), and in subjects with sporadic ALS (sALS; 2,229 AS and 716 APA). Furthermore, heterogeneous nuclear ribonucleoprotein H (hnRNPH) and other RNA-binding proteins are predicted to be potential regulators of cassette exon AS events in both c9ALS and sALS. Co-expression and gene-association network analyses of gene expression and AS data revealed divergent pathways associated with c9ALS and sALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Cerebelo/metabolismo , Lóbulo Frontal/metabolismo , Regulación de la Expresión Génica/genética , Proteínas/genética , ARN/metabolismo , Transcriptoma/genética , Adulto , Anciano , Empalme Alternativo , Proteína C9orf72 , Estudios de Asociación Genética , Ribonucleoproteína Heterogénea-Nuclear Grupo F-H/metabolismo , Humanos , Persona de Mediana Edad , Poliadenilación/genética , Análisis de Secuencia de ARN
3.
Science ; 348(6239): 1151-4, 2015 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-25977373

RESUMEN

The major genetic cause of frontotemporal dementia and amyotrophic lateral sclerosis is a G4C2 repeat expansion in C9ORF72. Efforts to combat neurodegeneration associated with "c9FTD/ALS" are hindered by a lack of animal models recapitulating disease features. We developed a mouse model to mimic both neuropathological and clinical c9FTD/ALS phenotypes. We expressed (G4C2)66 throughout the murine central nervous system by means of somatic brain transgenesis mediated by adeno-associated virus. Brains of 6-month-old mice contained nuclear RNA foci, inclusions of poly(Gly-Pro), poly(Gly-Ala), and poly(Gly-Arg) dipeptide repeat proteins, as well as TDP-43 pathology. These mouse brains also exhibited cortical neuron and cerebellar Purkinje cell loss, astrogliosis, and decreased weight. (G4C2)66 mice also developed behavioral abnormalities similar to clinical symptoms of c9FTD/ALS patients, including hyperactivity, anxiety, antisocial behavior, and motor deficits.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Demencia Frontotemporal/genética , Ratones , Proteínas/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Trastorno de Personalidad Antisocial/genética , Trastorno de Personalidad Antisocial/patología , Proteína C9orf72 , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Dependovirus , Dipéptidos/metabolismo , Demencia Frontotemporal/patología , Técnicas de Transferencia de Gen , Células HEK293 , Humanos , Células de Purkinje/metabolismo , Células de Purkinje/patología , ARN Nuclear/metabolismo
4.
Alzheimers Res Ther ; 6(3): 29, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25031639

RESUMEN

The identification of tau protein as a major constituent of neurofibrillary tangles spurred considerable effort devoted to identifying and validating pathways through which therapeutics may alleviate tau burden in Alzheimer's disease and related tauopathies, including chronic traumatic encephalopathy associated with sport- and military-related injuries. Most tau-based therapeutic strategies have previously focused on modulating tau phosphorylation, given that tau species present within neurofibrillary tangles are hyperphosphorylated on a number of different residues. However, the recent discovery that tau is modified by acetylation necessitates additional research to provide greater mechanistic insight into the spectrum of physiological consequences of tau acetylation, which may hold promise as a novel therapeutic target. In this review, we discuss recent findings evaluating tau acetylation in the context of previously accepted notions regarding tau biology and pathophysiology. We also examine the evidence demonstrating the neuroprotective and beneficial consequences of inhibiting histone deacetylase (HDAC)6, a tau deacetylase, including its effect on microtubule stabilization. We also discuss the rationale for pharmacologically modulating HDAC6 in tau-based pathologies as a novel therapeutic strategy.

5.
Hum Mol Genet ; 23(1): 104-16, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23962722

RESUMEN

The accumulation of hyperphosphorylated tau in neurofibrillary tangles (NFTs) is a neuropathological hallmark of tauopathies, including Alzheimer's disease (AD) and chronic traumatic encephalopathy, but effective therapies directly targeting the tau protein are currently lacking. Herein, we describe a novel mechanism in which the acetylation of tau on KXGS motifs inhibits phosphorylation on this same motif, and also prevents tau aggregation. Using a site-specific antibody to detect acetylation of KXGS motifs, we demonstrate that these sites are hypoacetylated in patients with AD, as well as a mouse model of tauopathy, suggesting that loss of acetylation on KXGS motifs renders tau vulnerable to pathogenic insults. Furthermore, we identify histone deacetylase 6 (HDAC6) as the enzyme responsible for the deacetylation of these residues, and provide proof of concept that acute treatment with a selective and blood-brain barrier-permeable HDAC6 inhibitor enhances acetylation and decreases phosphorylation on tau's KXGS motifs in vivo. As such, we have uncovered a novel therapeutic pathway that can be manipulated to block the formation of pathogenic tau species in disease.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Histona Desacetilasas/metabolismo , Proteínas tau/química , Proteínas tau/metabolismo , Acetilación , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/tratamiento farmacológico , Secuencias de Aminoácidos/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Femenino , Células HEK293 , Células HeLa , Histona Desacetilasa 6 , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Ácidos Hidroxámicos/farmacología , Masculino , Ratones , Fosforilación , Multimerización de Proteína , Pirimidinas/farmacología
6.
Hum Mol Genet ; 23(6): 1467-78, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24163244

RESUMEN

Progranulin (GRN) mutations causing haploinsufficiency are a major cause of frontotemporal lobar degeneration (FTLD-TDP). Recent discoveries demonstrating sortilin (SORT1) is a neuronal receptor for PGRN endocytosis and a determinant of plasma PGRN levels portend the development of enhancers targeting the SORT1-PGRN axis. We demonstrate the preclinical efficacy of several approaches through which impairing PGRN's interaction with SORT1 restores extracellular PGRN levels. Our report is the first to demonstrate the efficacy of enhancing PGRN levels in iPSC neurons derived from frontotemporal dementia (FTD) patients with PGRN deficiency. We validate a small molecule preferentially increases extracellular PGRN by reducing SORT1 levels in various mammalian cell lines and patient-derived iPSC neurons and lymphocytes. We further demonstrate that SORT1 antagonists and a small-molecule binder of PGRN588₋593, residues critical for PGRN-SORT1 binding, inhibit SORT1-mediated PGRN endocytosis. Collectively, our data demonstrate that the SORT1-PGRN axis is a viable target for PGRN-based therapy, particularly in FTD-GRN patients.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/genética , Endocitosis/efectos de los fármacos , Demencia Frontotemporal/genética , Células Madre Pluripotentes Inducidas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Piridinas/farmacología , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Línea Celular Tumoral , Demencia Frontotemporal/patología , Variación Genética , Células HEK293 , Haploinsuficiencia , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Linfocitos/metabolismo , Progranulinas , Reproducibilidad de los Resultados
7.
Acta Neuropathol ; 126(6): 895-905, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24166615

RESUMEN

Individuals carrying (GGGGCC) expanded repeats in the C9orf72 gene represent a significant portion of patients suffering from amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Elucidating how these expanded repeats cause "c9FTD/ALS" has since become an important goal of the field. Toward this end, we sought to investigate whether epigenetic changes are responsible for the decrease in C9orf72 expression levels observed in c9FTD/ALS patients. We obtained brain tissue from ten c9FTD/ALS individuals, nine FTD/ALS cases without a C9orf72 repeat expansion, and nine disease control participants, and generated fibroblastoid cell lines from seven C9orf72 expanded repeat carriers and seven participants carrying normal alleles. Chromatin immunoprecipitation using antibodies for histone H3 and H4 trimethylated at lysines 9 (H3K9), 27 (H3K27), 79 (H3K79), and 20 (H4K20) revealed that these trimethylated residues bind strongly to C9orf72 expanded repeats in brain tissue, but not to non-pathogenic repeats. Our finding that C9orf72 mRNA levels are reduced in the frontal cortices and cerebella of c9FTD/ALS patients is consistent with trimethylation of these histone residues, an event known to repress gene expression. Moreover, treating repeat carrier-derived fibroblasts with 5-aza-2-deoxycytidine, a DNA and histone demethylating agent, not only decreased C9orf72 binding to trimethylated histone residues, but also increased C9orf72 mRNA expression. Our results provide compelling evidence that trimethylation of lysine residues within histones H3 and H4 is a novel mechanism involved in reducing C9orf72 mRNA expression in expanded repeat carriers. Of importance, we show that mutant C9orf72 binding to trimethylated H3K9 and H3K27 is detectable in blood of c9FTD/ALS patients. Confirming these exciting results using blood from a larger cohort of patients may establish this novel epigenetic event as a biomarker for c9FTD/ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Degeneración Lobar Frontotemporal/genética , Histonas/genética , Proteínas/genética , Adulto , Alelos , Esclerosis Amiotrófica Lateral/metabolismo , Proteína C9orf72 , Metilación de ADN , Epigénesis Genética , Degeneración Lobar Frontotemporal/metabolismo , Expresión Génica , Histonas/metabolismo , Humanos , Proteínas/metabolismo
8.
PLoS One ; 8(7): e69864, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23922830

RESUMEN

Tar DNA binding protein 43 (TDP-43) is the major component of pathological deposits in frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP) and in amyotrophic lateral sclerosis (ALS). It has been reported that TDP-43 transgenic mouse models expressing human TDP-43 wild-type or ALS-associated mutations recapitulate certain ALS and FTLD pathological phenotypes. Of note, expression of human TDP-43 (hTDP-43) reduces the levels of mouse Tdp-43 (mTdp-43). However, it remained unclear whether the mechanisms through which TDP-43 induces ALS or FTLD-like pathologies resulted from a reduction in mTdp-43, an increase in hTDP-43, or a combination of both. In elucidating the role of mTdp-43 and hTDP-43 in hTDP-43 transgenic mice, we observed that reduction of mTdp-43 in non-transgenic mice by intraventricular brain injection of AAV1-shTardbp leads to a dramatic increase in the levels of splicing variants of mouse sortilin 1 and translin. However, the levels of these two abnormal splicing variants are not increased in hTDP-43 transgenic mice despite significant downregulation of mTdp-43 in these mice. Moreover, further downregulation of mTdp-43 in hTDP-43 hemizygous mice, which are asymptomatic, to the levels equivalent to that of mTdp-43 in hTDP-43 homozygous mice does not induce the pathological phenotypes observed in the homozygous mice. Lastly, the number of dendritic spines and the RNA levels of TDP-43 RNA targets critical for synapse formation and function are significantly decreased in symptomatic homozygous mice. Together, our findings indicate that mTdp-43 downregulation does not lead to a loss of function mechanism or account for the pathological phenotypes observed in hTDP-43 homozygous mice because hTDP-43 compensates for the reduction, and associated functions of mTdp-43. Rather, expression of hTDP-43 beyond a certain threshold leads to abnormal metabolism of TDP-43 RNA targets critical for neuronal structure and function, which might be responsible for the ALS or FTLD-like pathologies observed in homozygous hTDP-43 transgenic mice.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Proteínas de Unión al ADN/metabolismo , Regulación hacia Abajo , Degeneración Lobar Frontotemporal/patología , Empalme Alternativo/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Animales Recién Nacidos , Proteínas de Unión al ADN/genética , Espinas Dendríticas/metabolismo , Modelos Animales de Enfermedad , Degeneración Lobar Frontotemporal/metabolismo , Hemicigoto , Homocigoto , Humanos , Inyecciones Intraventriculares , Ratones , Ratones Transgénicos , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Sinapsis/metabolismo
9.
Hum Mol Genet ; 22(15): 3112-22, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23575225

RESUMEN

TAR DNA-binding protein-43 (TDP-43) is the principal component of ubiquitinated inclusions in amyotrophic lateral sclerosis (ALS) and the most common pathological subtype of frontotemporal dementia-frontotemporal lobar degeneration with TDP-43-positive inclusions (FTLD-TDP). To date, the C-terminus of TDP-43, which is aggregation-prone and contains almost all ALS-associated mutations, has garnered much attention while the functions of the N-terminus of TDP-43 remain largely unknown. To bridge this gap in our knowledge, we utilized novel cell culture and computer-assisted models to evaluate which region(s) of TDP-43 regulate its folding, self-interaction, biological activity and aggregation. We determined that the extreme N-terminus of TDP-43, specifically the first 10 residues, regulates folding of TDP-43 monomers necessary for proper homodimerization and TDP-43-regulated splicing. Despite such beneficial functions, we discovered an interesting dichotomy: full-length TDP-43 aggregation, which is believed to be a pathogenic process, also requires the extreme N-terminus of TDP-43. As such, we provide new insight into the structural basis for TDP-43 function and aggregation, and we suggest that stabilization of TDP-43 homodimers, the physiologically active form of TDP-43, may be a promising therapeutic strategy for ALS and FTLD-TDP.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Proteínas de Unión al ADN/química , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Humanos , Cuerpos de Inclusión/metabolismo , Modelos Anatómicos , Conformación Proteica , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Estabilidad Proteica , Empalme del ARN
10.
Proc Natl Acad Sci U S A ; 109(52): 21510-5, 2012 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-23236149

RESUMEN

Sortilin 1 regulates the levels of brain progranulin (PGRN), a neurotrophic growth factor that, when deficient, is linked to cases of frontotemporal lobar degeneration with TAR DNA-binding protein-43 (TDP-43)-positive inclusions (FTLD-TDP). We identified a specific splicing enhancer element that regulates the inclusion of a sortilin exon cassette (termed Ex17b) not normally present in the mature sortilin mRNA. This enhancer element is consistently present in sortilin RNA of mice and other species but absent in primates, which carry a premature stop codon within the Ex17b sequence. In the absence of TDP-43, which acts as a regulatory inhibitor, Ex17b is included in the sortilin mRNA. In humans, in contrast to mice, the inclusion of Ex17b in sortilin mRNA generates a truncated, nonfunctional, extracellularly released protein that binds to but does not internalize PGRN, essentially acting as a decoy receptor. Based on these results, we propose a potential mechanism linking misregulation of sortilin splicing with altered PGRN metabolism.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Empalme del ARN/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Secuencias de Aminoácidos , Animales , Secuencia de Bases , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Regulación hacia Abajo , Endocitosis , Elementos de Facilitación Genéticos/genética , Exones/genética , Glicina/metabolismo , Humanos , Ratones , Modelos Biológicos , Datos de Secuencia Molecular , Progranulinas , Unión Proteica , Biosíntesis de Proteínas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína , Relación Estructura-Actividad
11.
Mol Neurodegener ; 7: 33, 2012 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-22781549

RESUMEN

BACKGROUND: Progranulin (PGRN), a widely secreted growth factor, is involved in multiple biological functions, and mutations located within the PGRN gene (GRN) are a major cause of frontotemporal lobar degeneration with TDP-43-positive inclusions (FLTD-TDP). In light of recent reports suggesting PGRN functions as a protective neurotrophic factor and that sortilin (SORT1) is a neuronal receptor for PGRN, we used a Sort1-deficient (Sort1-/-) murine primary hippocampal neuron model to investigate whether PGRN's neurotrophic effects are dependent on SORT1. We sought to elucidate this relationship to determine what role SORT1, as a regulator of PGRN levels, plays in modulating PGRN's neurotrophic effects. RESULTS: As the first group to evaluate the effect of PGRN loss in Grn knockout primary neuronal cultures, we show neurite outgrowth and branching are significantly decreased in Grn-/- neurons compared to wild-type (WT) neurons. More importantly, we also demonstrate that PGRN overexpression can rescue this phenotype. However, the recovery in outgrowth is not observed following treatment with recombinant PGRN harboring missense mutations p.C139R, p.P248L or p.R432C, indicating that these mutations adversely affect the neurotrophic properties of PGRN. In addition, we also present evidence that cleavage of full-length PGRN into granulin peptides is required for increased neuronal outgrowth, suggesting that the neurotrophic functions of PGRN are contained within certain granulins. To further characterize the mechanism by which PGRN impacts neuronal morphology, we assessed the involvement of SORT1. We demonstrate that PGRN induced-outgrowth occurs in the absence of SORT1 in Sort1-/- cultures. CONCLUSION: We demonstrate that loss of PGRN impairs proper neurite outgrowth and branching, and that exogenous PGRN alleviates this impairment. Furthermore, we determined that exogenous PGRN induces outgrowth independent of SORT1, suggesting another receptor(s) is involved in PGRN induced neuronal outgrowth.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Proliferación Celular , Hipocampo/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Neuritas/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Animales , Western Blotting , Ensayo de Inmunoadsorción Enzimática , Degeneración Lobar Frontotemporal/genética , Degeneración Lobar Frontotemporal/metabolismo , Granulinas , Hipocampo/citología , Inmunohistoquímica , Péptidos y Proteínas de Señalización Intercelular/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Confocal , Neuronas/citología , Neuronas/metabolismo , Técnicas de Cultivo de Órganos , Progranulinas
12.
Cold Spring Harb Perspect Med ; 2(5): a009423, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22553500

RESUMEN

Parkinson's disease (PD), like a number of neurodegenerative diseases associated with aging, is characterized by the abnormal accumulation of protein in a specific subset of neurons. Although researchers have recently elucidated the genetic causes of PD, much remains unknown about what causes increased protein deposition in the disease. Given that increased protein aggregation may result not only from an increase in production, but also from decreased protein clearance, it is imperative to investigate both possibilities as potential PD culprits. This article provides a review of the systems that regulate protein clearance, including the ubiquitin proteasome system (UPS) and the autophagy-lysosomal pathway. Literature implicating failure of these mechanisms-such as UPS dysfunction resulting from environmental toxins and mutations in α-synuclein and parkin, as well as macroautophagic pathway failure because of oxidative stress and aging-in the pathogenesis of PD is also discussed.


Asunto(s)
Autofagia/fisiología , Lisosomas/fisiología , Enfermedad de Parkinson/etiología , Complejo de la Endopetidasa Proteasomal/fisiología , Proteínas/metabolismo , Deficiencias en la Proteostasis/etiología , Ubiquitina/fisiología , Adenosina Trifosfatasas/genética , Envejecimiento/fisiología , Animales , Contaminantes Ambientales/toxicidad , Humanos , Ratones , Mutación/genética , Estrés Oxidativo/fisiología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Pliegue de Proteína/efectos de los fármacos , Proteolisis , Deficiencias en la Proteostasis/genética , Deficiencias en la Proteostasis/metabolismo , Ratas , Factores de Riesgo , Transducción de Señal/fisiología
13.
Brain Res ; 1462: 118-28, 2012 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-22338605

RESUMEN

Frontotemporal lobar degeneration (FTLD), a neurodegenerative disease primarily affecting the frontal and temporal lobes, is one of the most common types of dementia. While the majority of FTLD cases are sporadic, approximately 10-40% of patients have an inherited form of FTLD. Mutations in the progranulin gene (GRN) have recently been identified as a major cause of FTLD with ubiquitin positive inclusions (FTLD-U). Because over 70 disease-linked GRN mutations cause abnormal deficiencies in the production of PGRN, a protein that plays a crucial role in embryogenesis, cell growth and survival, wound repair and inflammation, researchers now aim to design therapies that would increase PGRN levels in affected individuals, thereby alleviating the symptoms associated with disease. Several compounds and genetic factors, as well as PGRN receptors, have recently been identified because of their ability to regulate PGRN levels. Strict quality control measures are needed given that extreme PGRN levels at either end of the spectrum - too low or too high - can lead to neurodegeneration or cancer, respectively. The aim of this review is to highlight what is known regarding PGRN biology; to improve understanding of the mechanisms involved in regulating PGRN levels and highlight studies that are laying the groundwork for the development of effective therapeutic modulators of PGRN. This article is part of a Special Issue entitled RNA-Binding Proteins.


Asunto(s)
Degeneración Lobar Frontotemporal/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Animales , Modelos Animales de Enfermedad , Degeneración Lobar Frontotemporal/tratamiento farmacológico , Humanos , Inflamación/genética , Inflamación/patología , Péptidos y Proteínas de Señalización Intercelular/deficiencia , Péptidos y Proteínas de Señalización Intercelular/fisiología , Ratones , Mutación , Factores de Crecimiento Nervioso/fisiología , Progranulinas , Transducción de Señal/fisiología , Cicatrización de Heridas/fisiología
14.
Mol Neurodegener ; 6: 73, 2011 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-22029574

RESUMEN

BACKGROUND: Abnormal distribution, modification and aggregation of transactivation response DNA-binding protein 43 (TDP-43) are the hallmarks of multiple neurodegenerative diseases, especially frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U) and amyotrophic lateral sclerosis (ALS). Researchers have identified 44 mutations in the TARDBP gene that encode TDP-43 as causative for cases of sporadic and familial ALS http://www.molgen.ua.ac.be/FTDMutations/. Certain mutant forms of TDP-43, such as M337V, are associated with increased low molecular weight (LMW) fragments compared to wild-type (WT) TDP-43 and cause neuronal apoptosis and developmental delay in chick embryos. Such findings support a direct link between altered TDP-43 function and neurodegeneration. RESULTS: To explore the pathogenic properties of the M337V mutation, we generated and characterized two mouse lines expressing human TDP-43 (hTDP-43(M337V)) carrying this mutation. hTDP-43(M337V) was expressed primarily in the nuclei of neurons in the brain and spinal cord, and intranuclear and cytoplasmic phosphorylated TDP-43 aggregates were frequently detected. The levels of TDP-43 LMW products of ~25 kDa and ~35 kDa species were also increased in the transgenic mice. Moreover, overexpression of hTDP-43(M337V) dramatically down regulated the levels of mouse TDP-43 (mTDP-43) protein and RNA, indicating TDP-43 levels are tightly controlled in mammalian systems. TDP-43M337V mice displayed reactive gliosis, widespread ubiquitination, chromatolysis, gait abnormalities, and early lethality. Abnormal cytoplasmic mitochondrial aggregates and abnormal phosphorylated tau were also detected in the mice. CONCLUSION: Our novel TDP-43M337V mouse model indicates that overexpression of hTDP-43(M337V) alone is toxic in vivo. Because overexpression of hTDP-43 in wild-type TDP-43 and TDP-43M337V mouse models produces similar phenotypes, the mechanisms causing pathogenesis in the mutant model remain unknown. However, our results suggest that overexpression of the hTDP-43(M337V) can cause neuronal dysfunction due to its effect on a number of cell organelles and proteins, such as mitochondria and TDP-43, that are critical for neuronal activity. The mutant model will serve as a valuable tool in the development of future studies designed to uncover pathways associated with TDP-43 neurotoxicity and the precise roles TDP-43 RNA targets play in neurodegeneration.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Ratones Transgénicos , Degeneración Nerviosa/fisiopatología , Neuronas/fisiología , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Trastornos del Movimiento/patología , Trastornos del Movimiento/fisiopatología , Mutación , Degeneración Nerviosa/patología , Enfermedades Neurodegenerativas/patología , Enfermedades Neurodegenerativas/fisiopatología , Neuronas/citología , Neuronas/patología , Médula Espinal/citología , Médula Espinal/metabolismo , Médula Espinal/patología , Proteínas tau/genética , Proteínas tau/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...