Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 62(34): e202304476, 2023 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-37218580

RESUMEN

Bacterial trans-acyltransferase polyketide synthases (trans-AT PKSs) are modular megaenzymes that employ unusual catalytic domains to assemble diverse bioactive natural products. One such PKS is responsible for the biosynthesis of the oximidine anticancer agents, oxime-substituted benzolactone enamides that inhibit vacuolar H+ -ATPases. Here, we describe the identification of the oximidine gene cluster in Pseudomonas baetica and the characterization of four novel oximidine variants, including a structurally simpler intermediate that retains potent anticancer activity. Using a combination of in vivo, in vitro and computational approaches, we experimentally elucidate the oximidine biosynthetic pathway and reveal an unprecedented mechanism for O-methyloxime formation. We show that this process involves a specialized monooxygenase and methyltransferase domain and provide insight into their activity, mechanism and specificity. Our findings expand the catalytic capabilities of trans-AT PKSs and identify potential strategies for the production of novel oximidine analogues.


Asunto(s)
Antineoplásicos , Policétidos , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/metabolismo , Bacterias , Metabolismo Secundario , Policétidos/metabolismo
2.
Gels ; 8(12)2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36547337

RESUMEN

The supramolecular gelation of small molecules is typically preceded by an external stimulus to trigger the self-assembly. The need for this trigger stems from the metastable nature of most supramolecular gels and can limit their applicability. Herein, we present a small urea-based molecule that spontaneously forms a stable hydrogel by simple mixing without the addition of an external trigger. Single particle tracking experiments and observations made from scanning electron microscopy indicated that triggerless gelation occurred in a similar fashion as the archetypical heat-triggered gelation. These results could stimulate the search for other supramolecular hydrogels that can be obtained by simple mixing. Furthermore, the mechanism of the heat-triggered supramolecular gelation was elucidated by a combination of molecular dynamics simulations and quantitative NMR experiments. Surprisingly, hydrogelation seemingly occurs via a stepwise self-assembly in which spherical nanoparticles mature into an entangled fibrillary network.

3.
Pharmaceuticals (Basel) ; 15(2)2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35215359

RESUMEN

PharmaSea performed large-scale in vivo screening of marine natural product (MNP) extracts, using zebrafish embryos and larvae, to identify compounds with the potential to treat epilepsy. In this study, we report the discovery of two new antiseizure compounds, the 2,5-diketopiperazine halimide and its semi-synthetic analogue, plinabulin. Interestingly, these are both known microtubule destabilizing agents, and plinabulin could have the potential for drug repurposing, as it is already in clinical trials for the prevention of chemotherapy-induced neutropenia and treatment of non-small cell lung cancer. Both halimide and plinabulin were found to have antiseizure activity in the larval zebrafish pentylenetetrazole (PTZ) seizure model via automated locomotor analysis and non-invasive local field potential recordings. The efficacy of plinabulin was further characterized in animal models of drug-resistant seizures, i.e., the larval zebrafish ethyl ketopentenoate (EKP) seizure model and the mouse 6 Hz psychomotor seizure model. Plinabulin was observed to be highly effective against EKP-induced seizures, on the behavioral and electrophysiological level, and showed activity in the mouse model. These data suggest that plinabulin could be of interest for the treatment of drug-resistant seizures. Finally, the investigation of two functional analogues, colchicine and indibulin, which were observed to be inactive against EKP-induced seizures, suggests that microtubule depolymerization does not underpin plinabulin's antiseizure action.

4.
Molecules ; 26(22)2021 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-34834008

RESUMEN

Steviol glycosides were subjected to bacteria present in a soil sample collected from a Stevia plantation in Paraguay. During the incubation experiments, next to the aglycon steviol, steviol degradation products were also formed. X-ray analysis and NMR methods in combination with chemical synthesis and GIAO NMR calculations were used to fully characterize the structure of these compounds as a tricyclic ketone and the corresponding reduced form. They were nicknamed monicanone and monicanol. The latter has the (S)-configuration at the alcohol site.


Asunto(s)
Diterpenos de Tipo Kaurano/química , Diterpenos de Tipo Kaurano/metabolismo , Glucósidos/química , Glucósidos/metabolismo , Hojas de la Planta/química , Stevia/química
5.
Neurochem Int ; 112: 124-133, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29174382

RESUMEN

Epilepsy is a neurological disease that affects more than 70 million people worldwide and is characterized by the presence of spontaneous unprovoked recurrent seizures. Existing anti-seizure drugs (ASDs) have side effects and fail to control seizures in 30% of patients due to drug resistance. Hence, safer and more efficacious drugs are sorely needed. Flavonoids are polyphenolic structures naturally present in most plants and consumed daily with no adverse effects reported. These structures have shown activity in several seizure and epilepsy animal models through allosteric modulation of GABAA receptors, but also via potent anti-inflammatory action in the brain. As such, dietary flavonoids offer an interesting source for ASD and anti-epileptogenic drug (AED) discovery, but their pharmaceutical potential is often hampered by metabolic instability and low oral bioavailability. It has been argued that their drug-likeness can be improved via methylation of the free hydroxyl groups, thereby dramatically enhancing metabolic stability and membrane transport, facilitating absorption and highly increasing bioavailability. Since no scientific data is available regarding the use of methylated flavonoids in the fight against epilepsy, we studied naringenin (NRG), kaempferol (KFL), and three methylated derivatives, i.e., naringenin 7-O-methyl ether (NRG-M), naringenin 4',7-dimethyl ether (NRG-DM), and kaempferide (4'-O-methyl kaempferol) (KFD) in the zebrafish pentylenetetrazole (PTZ) seizure model. We demonstrate that the methylated flavanones NRG-DM and NRG-M are highly effective against PTZ-induced seizures in larval zebrafish, whereas NRG and the flavonols KFL and KFD possess only a limited activity. Moreover, we show that NRG-DM is active in two standard acute mouse seizure models, i.e., the timed i.v. PTZ seizure model and the 6-Hz psychomotor seizure model. Based on these results, NRG-DM is proposed as a lead compound that is worth further investigation for the treatment of generalized seizures and drug-resistant focal seizures. Our data therefore highlights the potential of methylated flavonoids in the search for new and improved ASDs.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Epilepsia/prevención & control , Flavanonas/uso terapéutico , Flavonoides/uso terapéutico , Éteres Metílicos/uso terapéutico , Convulsiones/prevención & control , Animales , Anticonvulsivantes/metabolismo , Relación Dosis-Respuesta a Droga , Epilepsia/inducido químicamente , Epilepsia/metabolismo , Flavanonas/metabolismo , Flavonoides/metabolismo , Masculino , Éteres Metílicos/metabolismo , Ratones , Ratones Endogámicos C57BL , Convulsiones/inducido químicamente , Convulsiones/metabolismo , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...