Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pathogens ; 13(6)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38921801

RESUMEN

Galphimia spp. is a plant employed in traditional medicine in Mexico because of its anxiolytic and sedative effects. Viruses have been associated with different alterations in plants, although asymptomatic agents (i.e., cryptic viruses) are also known. High-throughput sequencing (HTS) allows for the detection of pathogenic and non-pathogenic viral agents in plants, including potential novel viruses. The aim of this study was to investigate the presence of viral agents in two populations of Galphimia spp. by HTS. Sequencing was conducted on an Illumina NextSeq 550 platform, and a putative novel virus was identified. Two contigs showed homology to partitiviruses, and these encoded the RNA-dependent RNA polymerase and coat protein. These proteins showed the highest identities with orthologs in the recently discovered Vitis cryptic virus. A phylogenetic analysis of both RNAs showed that the new virus clusters into the monophyletic genus Deltapartitivirus along with other plant-infecting viruses. The result of the HTS analysis was validated by conventional RT-PCR and Sanger sequencing. A novel virus was discovered in a symptomless Galphimia spp. plant and tentatively named the Galphimia cryptic virus (GCV). This is the first virus discovered in medicinal plants in Mexico.

2.
Plant Dis ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38568788

RESUMEN

During summer 2022, a cluster of Madagascar periwinkle plants with white and mauve flowers were observed with foliar mild yellow mosaic symptoms on a private property in Harlingen, Cameron County, Texas. The symptoms were reproduced on mechanically inoculated periwinkle and Nicotiana benthamiana plants. Virions of 776 to 849 nm in length and 11.7 to 14.8 nm in width were observed in transmission electron microscopy of leaf dip preparations made from symptomatic periwinkle leaves. Highthroughput sequencing (HTS) analysis of total RNA extracts from symptomatic leaves revealed the occurrence of two highly divergent variants of a novel Potyvirus species as the only virus-like sequences present in the sample. The complete genomes of both variants were independently amplified via RT-PCR, cloned, and Sanger sequenced. The 5' and 3' of the genomes were acquired using RACE methodology. The assembled virus genomes were 9,936 and 9,944 nucleotides (nt) long and they shared 99.9-100% identities with the respective HTS-derived genomes. Each genome encoded hypothetical polyprotein of 3,171 amino acids (aa) (362.6 kDa) and 3,173 aa (362.7 kDa), respectively, and they shared 77.3%/84.4% nt/aa polyproteins identities, indicating that they represent highly divergent variants of the same Potyvirus species. Both genomes also shared below species threshold polyprotein identity levels with the most closely phylogenetically related known potyviruses thus indicating that they belong to a novel species. The name periwinkle mild yellow mosaic virus (PwMYMV) is given to the potyvirus with complete genomes of 9,936 nt for variant 1 (PwMYMV-1) and 9,944 nt for variant 2 (PwMYMV-2). We propose that PwMYMV be assigned into the genus Potyvirus (family Potyviridae).

4.
bioRxiv ; 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38187547

RESUMEN

The maintenance of stable mating type polymorphisms is a classic example of balancing selection, underlying the nearly ubiquitous 50/50 sex ratio in species with separate sexes. One lesser known but intriguing example of a balanced mating polymorphism in angiosperms is heterodichogamy - polymorphism for opposing directions of dichogamy (temporal separation of male and female function in hermaphrodites) within a flowering season. This mating system is common throughout Juglandaceae, the family that includes globally important and iconic nut and timber crops - walnuts (Juglans), as well as pecan and other hickories (Carya). In both genera, heterodichogamy is controlled by a single dominant allele. We fine-map the locus in each genus, and find two ancient (>50 Mya) structural variants involving different genes that both segregate as genus-wide trans-species polymorphisms. The Juglans locus maps to a ca. 20 kb structural variant adjacent to a probable trehalose phosphate phosphatase (TPPD-1), homologs of which regulate floral development in model systems. TPPD-1 is differentially expressed between morphs in developing male flowers, with increased allele-specific expression of the dominant haplotype copy. Across species, the dominant haplotype contains a tandem array of duplicated sequence motifs, part of which is an inverted copy of the TPPD-1 3' UTR. These repeats generate various distinct small RNAs matching sequences within the 3' UTR and further downstream. In contrast to the single-gene Juglans locus, the Carya heterodichogamy locus maps to a ca. 200-450 kb cluster of tightly linked polymorphisms across 20 genes, some of which have known roles in flowering and are differentially expressed between morphs in developing flowers. The dominant haplotype in pecan, which is nearly always heterozygous and appears to rarely recombine, shows markedly reduced genetic diversity and is over twice as long as its recessive counterpart due to accumulation of various types of transposable elements. We did not detect either genetic system in other heterodichogamous genera within Juglandaceae, suggesting that additional genetic systems for heterodichogamy may yet remain undiscovered.

5.
Viruses ; 15(7)2023 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-37515247

RESUMEN

This is the first viral metagenomic analysis of grapevine conducted in Mexico. During the summer of 2021, 48 plants displaying virus-like symptoms were sampled in Queretaro, an important grapevine-producing area of Mexico, and analyzed for the presence of viruses via high-throughput sequencing (HTS). The results of HTS were verified by real-time RT-PCR following a standardized testing scheme (Protocol 2010). Fourteen different viruses were identified, including grapevine asteroid mosaic-associated virus (GAMaV), grapevine Cabernet Sauvignon reovirus (GCSV), grapevine fanleaf virus (GFLV), grapevine fleck virus (GFkV), grapevine Pinot gris virus (GPGV), grapevine red globe virus (GRGV), grapevine rupestris stem pitting-associated virus (GRSPaV), grapevine rupestris vein feathering virus (GRVFV), grapevine Syrah virus 1 (GSyV-1), grapevine virus B (GVB), and grapevine leafroll-associated viruses 1, 2, 3, 4 (GLRaV1, 2, 3, 4). Additionally, divergent variants of GLRaV4 and GFkV, and a novel Enamovirus-like virus were discovered. This is the first report of GAMaV, GCSV, GLRaV4, GPGV, GRGV, GRVFV, and GSyV-1 infecting grapevines in Mexico; the impact of these pathogens on production is unknown.


Asunto(s)
Luteoviridae , Vitis , México , Incidencia , Enfermedades de las Plantas , Secuenciación de Nucleótidos de Alto Rendimiento
6.
Plants (Basel) ; 12(11)2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37299118

RESUMEN

High-throughput sequencing (HTS), more specifically RNA sequencing of plant tissues, has become an indispensable tool for plant virologists to detect and identify plant viruses. During the data analysis step, plant virologists typically compare the obtained sequences to reference virus databases. In this way, they are neglecting sequences without homologies to viruses, which usually represent the majority of sequencing reads. We hypothesized that traces of other pathogens might be detected in this unused sequence data. In the present study, our goal was to investigate whether total RNA-seq data, as generated for plant virus detection, is also suitable for the detection of other plant pathogens and pests. As proof of concept, we first analyzed RNA-seq datasets of plant materials with confirmed infections by cellular pathogens in order to check whether these non-viral pathogens could be easily detected in the data. Next, we set up a community effort to re-analyze existing Illumina RNA-seq datasets used for virus detection to check for the potential presence of non-viral pathogens or pests. In total, 101 datasets from 15 participants derived from 51 different plant species were re-analyzed, of which 37 were selected for subsequent in-depth analyses. In 29 of the 37 selected samples (78%), we found convincing traces of non-viral plant pathogens or pests. The organisms most frequently detected in this way were fungi (15/37 datasets), followed by insects (13/37) and mites (9/37). The presence of some of the detected pathogens was confirmed by independent (q)PCRs analyses. After communicating the results, 6 out of the 15 participants indicated that they were unaware of the possible presence of these pathogens in their sample(s). All participants indicated that they would broaden the scope of their bioinformatic analyses in future studies and thus check for the presence of non-viral pathogens. In conclusion, we show that it is possible to detect non-viral pathogens or pests from total RNA-seq datasets, in this case primarily fungi, insects, and mites. With this study, we hope to raise awareness among plant virologists that their data might be useful for fellow plant pathologists in other disciplines (mycology, entomology, bacteriology) as well.

7.
Plants (Basel) ; 11(24)2022 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-36559676

RESUMEN

Pawpaw (Asimina triloba) trees exhibiting stunting and foliar mosaic, chlorosis, or distortions were observed in New York. In 2021, leaf samples from two symptomatic trees and a sapling, as well as two asymptomatic trees, were tested for the presence of viruses and viroids by high-throughput sequencing (HTS) using total RNA after ribosomal RNA depletion. HTS sequence information revealed tobacco ringspot virus (TRSV) and tomato ringspot virus (ToRSV) in symptomatic but not in asymptomatic leaves. HTS reads and de novo-assembled contigs covering the genomes of both viruses were obtained, with a higher average read depth for RNA2 than RNA1. The occurrence of TRSV and ToRSV was confirmed in the original leaf samples used for HTS and 12 additional trees and saplings from New York and Maryland in 2022 by RT-PCR combined with Sanger sequencing, and DAS-ELISA. Single infections by TRSV in 11 of 14 trees and dual infections by TRSV and ToRSV in 3 of 14 trees were identified. The nucleotide sequence identity of partial gene fragments of TRSV and ToRSV was high among pawpaw isolates (94.9-100% and 91.8-100%, respectively) and between pawpaw isolates and isolates from other horticultural crops (93.6-100% and 71.3-99.3%, respectively). This study is the first to determine the virome of pawpaw.

8.
Plants (Basel) ; 11(18)2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36145740

RESUMEN

Grapevine virus G (GVG) is a recently discovered vitivirus infecting grapevines. Historically, viruses in the genus Vitivirus have been associated with the grapevine rugose wood disease. Based on new and previously reported GVG isolates, primers and probes were developed for real-time RT-PCR. The developed assay successfully detected the virus in infected plants during dormancy and the growing season. A field study of 4327 grapevines from Croatian continental and coastal wine-growing regions confirmed the presence of GVG in 456 (~10.5%) grapevines from three collection plantations and 77 commercial vineyards, with infection rates ranging from 2% to 100%. Interestingly, the virus was confirmed only in vines considered to be Croatian autochthonous cultivars, but not in introduced cultivars. A 564-nucleotide long portion of the coat protein gene from previously known and newly characterized GVG isolates had nucleotide and amino acid identities ranging from 89% to 100% and from 96.8% to 100%, respectively. Phylogenetic analysis revealed five distinct groups, with isolates originating from the same site being close to each other, indicating possible local infection. The information presented in this manuscript sets the stage for future studies to better understand the ecology and epidemiology of GVG and the possible need for inclusion in certification schemes.

9.
Plants (Basel) ; 11(16)2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-36015438

RESUMEN

Grapevine badnavirus 1 (GBV-1) was recently discovered in grapevine using high throughput sequencing. In order to carry out large-scale testing that will allow for better insights into virus distribution, conventional and real-time PCR assays were developed using sequences both from previously known, and four newly characterized isolates. Throughout the growing season and dormancy, GBV-1 can be detected by real-time PCR using available tissue, with the possibility of false-negative results early in vegetation growth. GBV-1 real-time PCR analysis of 4302 grapevine samples from the Croatian continental and coastal wine-growing regions revealed 576 (~13.4%) positive vines. In the continental wine-growing region, virus incidence was confirmed in only two collection plantations, whereas in the coastal region, infection was confirmed in 30 commercial vineyards and one collection plantation. Infection rates ranged from 1.9 to 96% at the different sites, with predominantly autochthonous grapevine cultivars infected. Conventional PCR products obtained from 50 newly discovered GBV-1 isolates, containing the 375 nucleotides long portion of the reverse transcriptase gene, showed nucleotide and amino acid identities ranging from 94.1 to 100% and from 92.8 to 100%, respectively. The reconstructed phylogenetic tree positioned the GBV-1 isolates taken from the same vineyard close to each other indicating a possible local infection event, although the tree nodes were generally not well supported.

10.
Plants (Basel) ; 11(11)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35684258

RESUMEN

Grapevine collections play an important role, especially in the study of viruses and virus-like pathogens. In 2009, after an initial ELISA screening for eight viruses (arabis mosaic virus, grapevine fanleaf virus, grapevine fleck virus, grapevine leafroll-associated viruses 1, 2, and 3, and grapevine viruses A and B), a collection of 368 grapevine accessions representing 14 different Croatian autochthonous cultivars and containing single or mixed infection of viruses was established to further characterize the viral pathogens. Subsequently, Western blot, RT-PCR, cloning, and sequencing revealed that grapevine rupestris stem pitting-associated virus was frequently found in accessions of the collection, with isolates showing substantial genetic diversity in the helicase and coat protein regions. High-throughput sequencing of 22 grapevine accessions provides additional insight into the viruses and viroids present in the collection and confirms the fact that Croatian autochthonous grapevine cultivars have high infection rates and high virome diversity. The recent spread of "flavescence dorée" phytoplasma in Europe has not spared the collection. After the first symptoms observed in 2020 and 2021, the presence of phytoplasma was confirmed by LAMP in six grapevine accessions and some of them were lost. Single or multiple viruses and viroids, as well as own rooted grapevines in the collection, make the plants susceptible to various abiotic factors, which, together with the recent occurrence of "flavescence dorée", makes the maintenance of the collection a challenge. Future efforts will be directed towards renewing the collection, as 56% of the original collection has been lost in the last 13 years.

11.
Plant Dis ; 106(6): 1639-1644, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35512301

RESUMEN

Sugar pine, Pinus lambertiana Douglas, is a keystone species of montane forests from Baja California to southern Oregon. Like other North American white pines, populations of sugar pine have been greatly reduced by the disease white pine blister rust (WPBR) caused by a fungal pathogen, Cronartium ribicola, that was introduced into North America early in the twentieth century. Major gene resistance to WPBR segregating in natural populations has been documented in sugar pine. Indeed, the dominant resistance gene in this species, Cr1, was genetically mapped, although not precisely. Genomic single nucleotide polymorphisms (SNPs) placed in a large scaffold were reported to be associated with the allele for this major gene resistance (Cr1R). Forest restoration efforts often include sugar pine seed derived from the rare resistant individuals (typically Cr1R/Cr1r) identified through an expensive 2-year phenotypic testing program. To validate and geographically characterize the variation in this association and investigate its potential to expedite genetic improvement in forest restoration, we developed a simple PCR-based, diploid genotyping of DNA from needle tissue. By applying this to range-wide samples of susceptible and resistant (Cr1R) trees, we show that the SNPs exhibit a strong, though not complete, association with Cr1R. Paralleling earlier studies of the geographic distribution of Cr1R and the inferred demographic history of sugar pine, the resistance-associated SNPs are marginally more common in southern populations, as is the frequency of Cr1R. Although the strength of the association of the SNPs with Cr1R and thus, their predictive value, also varies with geography, the potential value of this new tool in quickly and efficiently identifying candidate WPBR-resistant seed trees is clear.


Asunto(s)
Pinus , Basidiomycota , Genómica , México , Pinus/genética , Pinus/microbiología , Polimorfismo de Nucleótido Simple/genética , Azúcares
12.
Insects ; 13(3)2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35323573

RESUMEN

The destructive citrus disease, Huanglongbing (HLB) or citrus greening, continues to devastate Florida's citrus industry. A hemipteran insect, the Asian citrus psyllid (ACP), disperses Candidatus Liberibacter asiaticus, one of the putative bacterial pathogens of HLB. This study builds upon ongoing research utilizing high-throughput sequencing to analyze the virome of ACP populations collected from citrus groves throughout Florida. Following the widespread detection of sequences aligning to the genome of citrus tristeza virus (CTV) across consecutive years in the Florida ACP virome, we continued to detect a pervasive amount of CTV in Florida ACPs during subsequent years. Simultaneously, we also detected mixed infections of CTV strains in pooled ACPs from different Florida regions. Predating the HLB epidemic, CTV has been present in Florida for many years and our results confirm its widespread and diverse persistence in Florida citrus groves through a unique lens, the ACP. CTV presence in the ACP likely results from feeding on CTV-infected citrus trees in Florida citrus groves, which may help to understand an overlapping presence of CTV and HLB, both endemic citrus pathosystems in the state, and their role in future integrated pest management strategies.

13.
Viruses ; 13(8)2021 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-34452308

RESUMEN

Viruses are considered of major importance in strawberry (Fragaria × ananassa Duchesne) production given their negative impact on plant vigor and growth. Strawberry accessions from the National Clonal Germplasm Repository were screened for viruses using high throughput sequencing (HTS). Analyses of sequence information from 45 plants identified multiple variants of 14 known viruses, comprising strawberry mottle virus (SMoV), beet pseudo yellows virus (BPYV), strawberry pallidosis-associated virus (SPaV), tomato ringspot virus (ToRSV), strawberry mild yellow edge virus (SMYEV), strawberry vein banding virus (SVBV), strawberry crinkle virus (SCV), strawberry polerovirus 1 (SPV-1), apple mosaic virus (ApMV), strawberry chlorotic fleck virus (SCFaV), strawberry crinivirus 4 (SCrV-4), strawberry crinivirus 3 (SCrV-3), Fragaria chiloensis latent virus (FClLV) and Fragaria chiloensis cryptic virus (FCCV). Genetic diversity of sequenced virus isolates was investigated via sequence homology analysis, and partial-genome sequences were deposited into GenBank. To confirm the HTS results and expand the detection of strawberry viruses, new reverse transcription quantitative PCR (RT-qPCR) assays were designed for the above-listed viruses. Further in silico and in vitro validation of the new diagnostic assays indicated high efficiency and reliability. Thus, the occurrence of different viruses, including divergent variants, among the strawberries was verified. This is the first viral metagenomic survey in strawberry, additionally, this study describes the design and validation of multiple RT-qPCR assays for strawberry viruses, which represent important detection tools for clean plant programs.


Asunto(s)
Fragaria/virología , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Enfermedades de las Plantas/virología , Virus ARN/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/normas , Mapeo Cromosómico , Genoma Viral , Metagenómica , Filogenia , Virus ARN/clasificación , Reproducibilidad de los Resultados
14.
Microbiol Resour Announc ; 10(34): e0056321, 2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34435852

RESUMEN

This report describes the partial (nearly complete) genome sequence of a novel reo-like virus tentatively named Diaphorina citri Cimodo-like virus. This putative virus has 10 double-stranded RNA segments and was detected in Asian citrus psyllid (Diaphorina citri) populations collected from Florida commercial citrus groves.

15.
Viruses ; 13(6)2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-34208336

RESUMEN

Development of High-Throughput Sequencing (HTS), also known as next generation sequencing, revolutionized diagnostic research of plant viruses. HTS outperforms bioassays and molecular diagnostic assays that are used to screen domestic and quarantine grapevine materials in data throughput, cost, scalability, and detection of novel and highly variant virus species. However, before HTS-based assays can be routinely used for plant virus diagnostics, performance specifications need to be developed and assessed. In this study, we selected 18 virus-infected grapevines as a test panel for measuring performance characteristics of an HTS-based diagnostic assay. Total nucleic acid (TNA) was extracted from petioles and dormant canes of individual samples and constructed libraries were run on Illumina NextSeq 500 instrument using a 75-bp single-end read platform. Sensitivity was 98% measured over 264 distinct virus and viroid infections with a false discovery rate (FDR) of approximately 1 in 5 positives. The results also showed that combining a spring petiole test with a fall cane test increased sensitivity to 100% for this TNA HTS assay. To evaluate extraction methodology, these results were compared to parallel dsRNA extractions. In addition, in a more detailed dilution study, the TNA HTS assay described here consistently performed well down to a dilution of 5%. In that range, sensitivity was 98% with a corresponding FDR of approximately 1 in 5. Repeatability and reproducibility were assessed at 99% and 93%, respectively. The protocol, criteria, and performance levels described here may help to standardize HTS for quality assurance and accreditation purposes in plant quarantine or certification programs.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Enfermedades de las Plantas/virología , Virus de Plantas/genética , Vitis/virología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/normas , ARN Viral , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
16.
Arch Virol ; 166(10): 2869-2873, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34292373

RESUMEN

Eriophyid mites are commonly found on the leaf surface of different plant species. In the present study, a novel virus associated with an eriophyid mite species was detected using high-throughput sequencing (HTS) of total RNA from fruit tree leaves, primarily growing under greenhouse conditions. The complete genome sequence was characterized using rapid amplification of cDNA ends followed by Sanger sequencing, revealing a genome of 8885 nucleotides in length. The single positive-stranded RNA genome was predicted to encode typical conserved domains of members of the genus Iflavirus in the family Iflaviridae. Phylogenetic analysis showed this virus to be closely related to the unclassified iflavirus tomato matilda associated virus (TMaV), with a maximum amino acid sequence identity of 59% in the RNA-dependent RNA polymerase domain. This low identity value justifies the recognition of the novel virus as a potential novel iflavirus. In addition to a lack of graft-transmissibility evidence, RT-PCR and HTS detection of this virus in the putative host plants were not consistent through different years and growing seasons, raising the possibility that rather than a plant virus, this was a virus infecting an organism associated with fruit tree leaves. Identification of Tetra pinnatifidae HTS-derived contigs in all fruit tree samples carrying the novel virus suggested this mite as the most likely host of the new virus (p-value < 1e-11), which is tentatively named "eriophyid mite-associated virus" (EMaV). This study highlights the importance of a careful biological study before assigning a new virus to a particular plant host when using metagenomics data.


Asunto(s)
Frutas/parasitología , Ácaros/virología , Virus ARN Monocatenarios Positivos/clasificación , Árboles/parasitología , Secuencia de Aminoácidos , Animales , Frutas/virología , Genoma Viral/genética , Metagenómica , Filogenia , Extractos Vegetales , Hojas de la Planta/parasitología , Hojas de la Planta/virología , Virus ARN Monocatenarios Positivos/genética , ARN Viral/genética , ARN Polimerasa Dependiente del ARN , Árboles/virología
17.
Plant J ; 104(2): 365-376, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32654344

RESUMEN

The genomic architecture and molecular mechanisms controlling variation in quantitative disease resistance loci are not well understood in plant species and have been barely studied in long-generation trees. Quantitative trait loci mapping and genome-wide association studies were combined to test a large single nucleotide polymorphism (SNP) set for association with quantitative and qualitative white pine blister rust resistance in sugar pine. In the absence of a chromosome-scale reference genome, a high-density consensus linkage map was generated to obtain locations for associated SNPs. Newly discovered associations for white pine blister rust quantitative disease resistance included 453 SNPs involved in wide biological functions, including genes associated with disease resistance and others involved in morphological and developmental processes. In addition, NBS-LRR pathogen recognition genes were found to be involved in quantitative disease resistance, suggesting these newly reported genes are qualitative genes with partial resistance, they are the result of defeated qualitative resistance due to avirulent races, or they have epistatic effects on qualitative disease resistance genes. This study is a step forward in our understanding of the complex genomic architecture of quantitative disease resistance in long-generation trees, and constitutes the first step towards marker-assisted disease resistance breeding in white pine species.


Asunto(s)
Basidiomycota/fisiología , Resistencia a la Enfermedad/genética , Pinus/genética , Pinus/microbiología , Mapeo Cromosómico , Genes de Plantas , Genética de Población , Genoma de Planta , Estudio de Asociación del Genoma Completo , Fenotipo , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
18.
Cytogenet Genome Res ; 160(6): 329-334, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32683370

RESUMEN

Rubus yellow net virus (RYNV) infects Rubus spp., causing a severe decline when present in mixed infections with other viruses. RYNV belongs to the family Caulimoviridae, also known as plant pararetroviruses, which can exist as episomal or integrated elements (endogenous). Most of integrated pararetroviruses are noninfectious; however, a few cases have been reported where they excised from the plant genome and formed infectious particles. Graft transmission onto indicator plants R. occidentalis "Munger" has been the standard test method for RYNV detection in certification programs. Previously, it was noticed that some RYNV PCR-positive plants did not induce symptoms on "Munger", suggesting an integration event. In this study, bio-indexing and different molecular techniques were employed to differentiate between integrated and episomal RYNV sequences. Reverse transcription-PCR using RYNV-specific oligonucleotides after DNase treatment generated positive results for the virus in graft transmissible isolates (episomal) only. To confirm these results, rolling circle amplification on DNA preparations from the same samples resulted in amplicons identified as RYNV only from plants with graft transmissible RYNV. High-throughput sequencing was used to identify the RYNV-like sequences present in the host DNA. These results indicate the integration of RYNV into the red raspberry genome and highlight the necessity to recognize this phenomenon (integration) in future Rubus quarantine and certification programs.


Asunto(s)
Caulimoviridae/genética , Genoma de Planta/genética , Virus de Plantas/genética , Rubus/genética , Rubus/virología , Integración Viral/genética , Caulimoviridae/aislamiento & purificación , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/virología , Virus de Plantas/aislamiento & purificación , Plásmidos/genética
19.
Plants (Basel) ; 9(2)2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-32092932

RESUMEN

Viruses can cause economic losses in fruit trees, including Prunus spp., by reducing yield and marketable fruit. Given the genetic diversity of viruses, reliable diagnostic methods relying on PCR are critical in determining viral infection in fruit trees. This study evaluated the broad-range detection capacity of currently available real-time RT-PCR assays for Prunus-infecting viruses and developed new assays when current tests were inadequate or absent. Available assays for 15 different viruses were exhaustively evaluated in silico to determine their capacity to detect virus isolates deposited in GenBank. During this evaluation, several isolates deposited since the assay was designed exhibited nucleotide mismatches in relation to the existing assay's primer sequences. In cases where updating an existing assay was impractical, we performed a redesign with the dual goals of assay compactness and comprehensive inclusion of genetic diversity. The efficiency of each developed assay was determined by a standard curve. To validate the assay designs, we tested them against a comprehensive set of 87 positive and negative Prunus samples independently analyzed by high throughput sequencing. As a result, all the real-time RT-PCR assays described herein successfully detected the different viruses and their corresponding isolates. To further validate the new and updated assays a Prunus germplasm collection was surveyed. The sensitive and reliable detection methods described here will be used for the large-scale pathogen testing required to maintain the highest quality nursery stock.

20.
Plant J ; 102(2): 410-423, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31823432

RESUMEN

Juglans (walnuts), the most speciose genus in the walnut family (Juglandaceae), represents most of the family's commercially valuable fruit and wood-producing trees. It includes several species used as rootstock for their resistance to various abiotic and biotic stressors. We present the full structural and functional genome annotations of six Juglans species and one outgroup within Juglandaceae (Juglans regia, J. cathayensis, J. hindsii, J. microcarpa, J. nigra, J. sigillata and Pterocarya stenoptera) produced using BRAKER2 semi-unsupervised gene prediction pipeline and additional tools. For each annotation, gene predictors were trained using 19 tissue-specific J. regia transcriptomes aligned to the genomes. Additional functional evidence and filters were applied to multi-exonic and mono-exonic putative genes to yield between 27 000 and 44 000 high-confidence gene models per species. Comparison of gene models to the BUSCO embryophyta dataset suggested that, on average, genome annotation completeness was 85.6%. We utilized these high-quality annotations to assess gene family evolution within Juglans, and among Juglans and selected Eurosid species. We found notable contractions in several gene families in J. hindsii, including disease resistance-related wall-associated kinase (WAK), Catharanthus roseus receptor-like kinase (CrRLK1L) and others involved in abiotic stress response. Finally, we confirmed an ancient whole-genome duplication that took place in a common ancestor of Juglandaceae using site substitution comparative analysis.


Asunto(s)
Genoma de Planta/genética , Genómica , Juglans/genética , Transcriptoma , Resistencia a la Enfermedad/genética , Juglans/fisiología , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...