Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
2.
Nucleic Acids Res ; 50(4): 1993-2004, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35137160

RESUMEN

Histone 3 lysine 4 trimethylation (H3K4me3) is an epigenetic mark found at gene promoters and CpG islands. H3K4me3 is essential for mammalian development, yet mechanisms underlying its genomic targeting are poorly understood. H3K4me3 methyltransferases SETD1B and MLL2 (KMT2B) are essential for oogenesis. We investigated changes in H3K4me3 in Setd1b conditional knockout (cKO) oocytes using ultra-low input ChIP-seq, with comparisons to DNA methylation and gene expression analyses. H3K4me3 was redistributed in Setd1b cKO oocytes showing losses at active gene promoters associated with downregulated gene expression. Remarkably, many regions also gained H3K4me3, in particular those that were DNA hypomethylated, transcriptionally inactive and CpG-rich, which are hallmarks of MLL2 targets. Consequently, loss of SETD1B disrupts the balance between MLL2 and de novo DNA methyltransferases in determining the epigenetic landscape during oogenesis. Our work reveals two distinct, complementary mechanisms of genomic targeting of H3K4me3 in oogenesis, with SETD1B linked to gene expression and MLL2 to CpG content.


Asunto(s)
Histonas , Lisina , Animales , Islas de CpG/genética , Metilación de ADN , Histona Metiltransferasas/genética , Histonas/genética , Histonas/metabolismo , Lisina/metabolismo , Mamíferos/genética , Oogénesis/genética
3.
Life Sci Alliance ; 5(4)2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35064075

RESUMEN

Differentiation and lineage specification are controlled by cooperation of growth factor signalling. The involvement of epigenetic regulators in lineage specification remains largely elusive. Here, we show that the histone methyltransferase Mll1 prevents intestinal progenitor cells from differentiation, whereas it is also involved in secretory lineage specification of Paneth and goblet cells. Using conditional mutagenesis in mice and intestinal organoids, we demonstrate that loss of Mll1 renders intestinal progenitor cells permissive for Wnt-driven secretory differentiation. However, Mll1-deficient crypt cells fail to segregate Paneth and goblet cell fates. Mll1 deficiency causes Paneth cell-determined crypt progenitors to exhibit goblet cell features by unleashing Mapk signalling, resulting in increased numbers of mixed Paneth/goblet cells. We show that loss of Mll1 abolishes the pro-proliferative effect of Mapk signalling in intestinal progenitor cells and promotes Mapk-induced goblet cell differentiation. Our data uncover Mll1 and its downstream targets Gata4/6 as a regulatory hub of Wnt and Mapk signalling in the control of lineage specification of intestinal secretory Paneth and goblet cells.


Asunto(s)
Sistema de Señalización de MAP Quinasas/genética , Vía de Señalización Wnt/genética , Animales , Diferenciación Celular/genética , Epigénesis Genética/genética , Epigenómica/métodos , Femenino , Células Caliciformes/citología , Células Caliciformes/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Intestinos , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Ratones , Ratones Transgénicos , Organoides/metabolismo , Células de Paneth/citología , Células de Paneth/metabolismo , Células Madre/metabolismo , Vía de Señalización Wnt/fisiología
4.
EMBO J ; 41(1): e106459, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34806773

RESUMEN

In mammals, histone 3 lysine 4 methylation (H3K4me) is mediated by six different lysine methyltransferases. Among these enzymes, SETD1B (SET domain containing 1b) has been linked to syndromic intellectual disability in human subjects, but its role in the mammalian postnatal brain has not been studied yet. Here, we employ mice deficient for Setd1b in excitatory neurons of the postnatal forebrain, and combine neuron-specific ChIP-seq and RNA-seq approaches to elucidate its role in neuronal gene expression. We observe that Setd1b controls the expression of a set of genes with a broad H3K4me3 peak at their promoters, enriched for neuron-specific genes linked to learning and memory function. Comparative analyses in mice with conditional deletion of Kmt2a and Kmt2b histone methyltransferases show that SETD1B plays a more pronounced and potent role in regulating such genes. Moreover, postnatal loss of Setd1b leads to severe learning impairment, suggesting that SETD1B-dependent regulation of H3K4me levels in postnatal neurons is critical for cognitive function.


Asunto(s)
Regulación de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/metabolismo , Aprendizaje/fisiología , Neuronas/metabolismo , Animales , Animales Recién Nacidos , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Núcleo Celular/metabolismo , Epigénesis Genética , Hipocampo/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Histonas/metabolismo , Integrasas/metabolismo , Memoria/fisiología , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Sitio de Iniciación de la Transcripción , Transcriptoma/genética
5.
Nucleic Acids Res ; 50(3): e15, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-34792175

RESUMEN

Recombineering assisted multiplex genome editing generally uses single-stranded oligonucleotides for site directed mutational changes. It has proven highly efficient for functional screens and to optimize microbial cell factories. However, this approach is limited to relatively small mutational changes. Here, we addressed the challenges involved in the use of double-stranded DNA substrates for multiplex genome engineering. Recombineering is mediated by phage single-strand annealing proteins annealing ssDNAs into the replication fork. We apply this insight to facilitate the generation of ssDNA from the dsDNA substrate and to alter the speed of replication by elevating the available deoxynucleoside triphosphate (dNTP) levels. Intracellular dNTP concentration was elevated by ribonucleotide reductase overexpression or dNTP addition to establish double-stranded DNA Recombineering-assisted Multiplex Genome Engineering (dReaMGE), which enables rapid and flexible insertional and deletional mutagenesis at multiple sites on kilobase scales in diverse bacteria without the generation of double-strand breaks or disturbance of the mismatch repair system. dReaMGE can achieve combinatorial genome engineering works, for example, alterations to multiple biosynthetic pathways, multiple promoter or gene insertions, variations of transcriptional regulator combinations, within a few days. dReaMGE adds to the repertoire of bacterial genome engineering to facilitate discovery, functional genomics, strain optimization and directed evolution of microbial cell factories.


Asunto(s)
ADN , Ingeniería Genética , Bacterias/genética , ADN de Cadena Simple/genética , Genoma Bacteriano/genética , Oligonucleótidos/genética
6.
PLoS Genet ; 17(12): e1009250, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34860830

RESUMEN

Epigenetic mechanisms are gatekeepers for the gene expression patterns that establish and maintain cellular identity in mammalian development, stem cells and adult homeostasis. Amongst many epigenetic marks, methylation of histone 3 lysine 4 (H3K4) is one of the most widely conserved and occupies a central position in gene expression. Mixed lineage leukemia 1 (MLL1/KMT2A) is the founding mammalian H3K4 methyltransferase. It was discovered as the causative mutation in early onset leukemia and subsequently found to be required for the establishment of definitive hematopoiesis and the maintenance of adult hematopoietic stem cells. Despite wide expression, the roles of MLL1 in non-hematopoietic tissues remain largely unexplored. To bypass hematopoietic lethality, we used bone marrow transplantation and conditional mutagenesis to discover that the most overt phenotype in adult Mll1-mutant mice is intestinal failure. MLL1 is expressed in intestinal stem cells (ISCs) and transit amplifying (TA) cells but not in the villus. Loss of MLL1 is accompanied by loss of ISCs and a differentiation bias towards the secretory lineage with increased numbers and enlargement of goblet cells. Expression profiling of sorted ISCs revealed that MLL1 is required to promote expression of several definitive intestinal transcription factors including Pitx1, Pitx2, Foxa1, Gata4, Zfp503 and Onecut2, as well as the H3K27me3 binder, Bahcc1. These results were recapitulated using conditional mutagenesis in intestinal organoids. The stem cell niche in the crypt includes ISCs in close association with Paneth cells. Loss of MLL1 from ISCs promoted transcriptional changes in Paneth cells involving metabolic and stress responses. Here we add ISCs to the MLL1 repertoire and observe that all known functions of MLL1 relate to the properties of somatic stem cells, thereby highlighting the suggestion that MLL1 is a master somatic stem cell regulator.


Asunto(s)
Células Madre Adultas/fisiología , Diferenciación Celular/genética , N-Metiltransferasa de Histona-Lisina/genética , Insuficiencia Intestinal/genética , Mucosa Intestinal/patología , Proteína de la Leucemia Mieloide-Linfoide/genética , Animales , Trasplante de Médula Ósea , Metilación de ADN , Modelos Animales de Enfermedad , Epigénesis Genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Insuficiencia Intestinal/patología , Mucosa Intestinal/citología , Yeyuno/citología , Yeyuno/patología , Ratones , Ratones Transgénicos , Mutagénesis , Mutación , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Nicho de Células Madre
7.
EMBO J ; 40(8): e105776, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33687089

RESUMEN

In the mammalian embryo, epiblast cells must exit the naïve state and acquire formative pluripotency. This cell state transition is recapitulated by mouse embryonic stem cells (ESCs), which undergo pluripotency progression in defined conditions in vitro. However, our understanding of the molecular cascades and gene networks involved in the exit from naïve pluripotency remains fragmentary. Here, we employed a combination of genetic screens in haploid ESCs, CRISPR/Cas9 gene disruption, large-scale transcriptomics and computational systems biology to delineate the regulatory circuits governing naïve state exit. Transcriptome profiles for 73 ESC lines deficient for regulators of the exit from naïve pluripotency predominantly manifest delays on the trajectory from naïve to formative epiblast. We find that gene networks operative in ESCs are also active during transition from pre- to post-implantation epiblast in utero. We identified 496 naïve state-associated genes tightly connected to the in vivo epiblast state transition and largely conserved in primate embryos. Integrated analysis of mutant transcriptomes revealed funnelling of multiple gene activities into discrete regulatory modules. Finally, we delineate how intersections with signalling pathways direct this pivotal mammalian cell state transition.


Asunto(s)
Diferenciación Celular , Redes Reguladoras de Genes , Células Madre Embrionarias de Ratones/metabolismo , Animales , Células Cultivadas , Regulación del Desarrollo de la Expresión Génica , Ratones , Células Madre Embrionarias de Ratones/citología , Transcriptoma
8.
Nat Commun ; 11(1): 6422, 2020 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-33349639

RESUMEN

Wnt/ß-catenin signaling is crucial for intestinal carcinogenesis and the maintenance of intestinal cancer stem cells. Here we identify the histone methyltransferase Mll1 as a regulator of Wnt-driven intestinal cancer. Mll1 is highly expressed in Lgr5+ stem cells and human colon carcinomas with increased nuclear ß-catenin. High levels of MLL1 are associated with poor survival of colon cancer patients. The genetic ablation of Mll1 in mice prevents Wnt/ß-catenin-driven adenoma formation from Lgr5+ intestinal stem cells. Ablation of Mll1 decreases the self-renewal of human colon cancer spheres and halts tumor growth of xenografts. Mll1 controls the expression of stem cell genes including the Wnt/ß-catenin target gene Lgr5. Upon the loss of Mll1, histone methylation at the stem cell promoters switches from activating H3K4 tri-methylation to repressive H3K27 tri-methylation, indicating that Mll1 sustains stem cell gene expression by antagonizing gene silencing through polycomb repressive complex 2 (PRC2)-mediated H3K27 tri-methylation. Transcriptome profiling of Wnt-mutated intestinal tumor-initiating cells reveals that Mll1 regulates Gata4/6 transcription factors, known to sustain cancer stemness and to control goblet cell differentiation. Our results demonstrate that Mll1 is an essential epigenetic regulator of Wnt/ß-catenin-induced intestinal tumorigenesis and cancer stemness.


Asunto(s)
Carcinogénesis/genética , Epigénesis Genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Células Madre Neoplásicas/metabolismo , Vía de Señalización Wnt , Animales , Carcinogénesis/patología , Diferenciación Celular , Línea Celular Tumoral , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Histonas/metabolismo , Humanos , Intestinos/patología , Lisina/metabolismo , Metilación , Ratones Desnudos , Células Madre Neoplásicas/patología , Complejo Represivo Polycomb 2/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Regulación hacia Arriba/genética , Vía de Señalización Wnt/genética , beta Catenina/metabolismo
9.
Molecules ; 25(21)2020 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-33153073

RESUMEN

Immobile Holliday junctions represent not only the most fundamental building block of structural DNA nanotechnology but are also of tremendous importance for the in vitro investigation of genetic recombination and epigenetics. Here, we present a detailed study on the room-temperature assembly of immobile Holliday junctions with the help of the single-strand annealing protein Redß. Individual DNA single strands are initially coated with protein monomers and subsequently hybridized to form a rigid blunt-ended four-arm junction. We investigate the efficiency of this approach for different DNA/protein ratios, as well as for different DNA sequence lengths. Furthermore, we also evaluate the potential of Redß to anneal sticky-end modified Holliday junctions into hierarchical assemblies. We demonstrate the Redß-mediated annealing of Holliday junction dimers, multimers, and extended networks several microns in size. While these hybrid DNA-protein nanostructures may find applications in the crystallization of DNA-protein complexes, our work shows the great potential of Redß to aid in the synthesis of functional DNA nanostructures under mild reaction conditions.


Asunto(s)
ADN Cruciforme/química , ADN de Cadena Simple/química , Proteínas de Unión al ADN/química , ADN/química , Temperatura
10.
Nucleic Acids Res ; 48(22): e130, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33119745

RESUMEN

Biosynthesis reprograming is an important way to diversify chemical structures. The large repetitive DNA sequences existing in polyketide synthase genes make seamless DNA manipulation of the polyketide biosynthetic gene clusters extremely challenging. In this study, to replace the ethyl group attached to the C-21 of the macrolide insecticide spinosad with a butenyl group by refactoring the 79-kb gene cluster, we developed a RedEx method by combining Redαß mediated linear-circular homologous recombination, ccdB counterselection and exonuclease mediated in vitro annealing to insert an exogenous extension module in the polyketide synthase gene without any extra sequence. RedEx was also applied for seamless deletion of the rhamnose 3'-O-methyltransferase gene in the spinosad gene cluster to produce rhamnosyl-3'-desmethyl derivatives. The advantages of RedEx in seamless mutagenesis will facilitate rational design of complex DNA sequences for diverse purposes.


Asunto(s)
Eliminación de Gen , Mutagénesis Insercional/genética , Sintasas Poliquetidas/genética , Dominios Proteicos/genética , Secuencia de Bases/genética , Clonación Molecular , ADN/genética , Recombinación Homóloga/genética , Familia de Multigenes/genética
11.
Development ; 147(12)2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32439762

RESUMEN

Methylation of histone 3 lysine 4 (H3K4) is a major epigenetic system associated with gene expression. In mammals there are six H3K4 methyltransferases related to yeast Set1 and fly Trithorax, including two orthologs of fly Trithorax-related: MLL3 and MLL4. Exome sequencing has documented high frequencies of MLL3 and MLL4 mutations in many types of human cancer. Despite this emerging importance, the requirements of these paralogs in mammalian development have only been incompletely reported. Here, we examined the null phenotypes to establish that MLL3 is first required for lung maturation, whereas MLL4 is first required for migration of the anterior visceral endoderm that initiates gastrulation in the mouse. This collective cell migration is preceded by a columnar-to-squamous transition in visceral endoderm cells that depends on MLL4. Furthermore, Mll4 mutants display incompletely penetrant, sex-distorted, embryonic haploinsufficiency and adult heterozygous mutants show aspects of Kabuki syndrome, indicating that MLL4 action, unlike MLL3, is dosage dependent. The highly specific and discordant functions of these paralogs in mouse development argues against their action as general enhancer factors.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/metabolismo , Anomalías Múltiples/genética , Anomalías Múltiples/patología , Anomalías Múltiples/veterinaria , Alelos , Animales , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario , Cara/anomalías , Cara/patología , Femenino , Genotipo , Enfermedades Hematológicas/genética , Enfermedades Hematológicas/patología , Enfermedades Hematológicas/veterinaria , N-Metiltransferasa de Histona-Lisina/química , N-Metiltransferasa de Histona-Lisina/genética , Pulmón/crecimiento & desarrollo , Pulmón/metabolismo , Masculino , Ratones , Ratones Noqueados , Mutagénesis , Embarazo , Insuficiencia Respiratoria/etiología , Factores de Tiempo , Enfermedades Vestibulares/genética , Enfermedades Vestibulares/patología , Enfermedades Vestibulares/veterinaria
12.
Clin Epigenetics ; 11(1): 121, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31439048

RESUMEN

BACKGROUND: Epigenetic regulation is important in hematopoiesis, but the involvement of histone variants is poorly understood. Myelodysplastic syndromes (MDS) are heterogeneous clonal hematopoietic stem cell (HSC) disorders characterized by ineffective hematopoiesis. MacroH2A1.1 is a histone H2A variant that negatively correlates with the self-renewal capacity of embryonic, adult, and cancer stem cells. MacroH2A1.1 is a target of the frequent U2AF1 S34F mutation in MDS. The role of macroH2A1.1 in hematopoiesis is unclear. RESULTS: MacroH2A1.1 mRNA levels are significantly decreased in patients with low-risk MDS presenting with chromosomal 5q deletion and myeloid cytopenias and tend to be decreased in MDS patients carrying the U2AF1 S34F mutation. Using an innovative mouse allele lacking the macroH2A1.1 alternatively spliced exon, we investigated whether macroH2A1.1 regulates HSC homeostasis and differentiation. The lack of macroH2A1.1 decreased while macroH2A1.1 haploinsufficiency increased HSC frequency upon irradiation. Moreover, bone marrow transplantation experiments showed that both deficiency and haploinsufficiency of macroH2A1.1 resulted in enhanced HSC differentiation along the myeloid lineage. Finally, RNA-sequencing analysis implicated macroH2A1.1-mediated regulation of ribosomal gene expression in HSC homeostasis. CONCLUSIONS: Together, our findings suggest a new epigenetic process contributing to hematopoiesis regulation. By combining clinical data with a discrete mutant mouse model and in vitro studies of human and mouse cells, we identify macroH2A1.1 as a key player in the cellular and molecular features of MDS. These data justify the exploration of macroH2A1.1 and associated proteins as therapeutic targets in hematological malignancies.


Asunto(s)
Anemia Macrocítica/genética , Regulación hacia Abajo , Células Madre Hematopoyéticas/citología , Histonas/genética , Síndromes Mielodisplásicos/genética , Animales , Diferenciación Celular , Deleción Cromosómica , Cromosomas Humanos Par 5/genética , Modelos Animales de Enfermedad , Epigénesis Genética , Haploinsuficiencia , Células Madre Hematopoyéticas/química , Humanos , Ratones , Mutación , Sitios de Empalme de ARN , Análisis de Secuencia de ARN
13.
Methods ; 164-165: 67-72, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-30953756

RESUMEN

The identification of bona fide protein-protein interactions and the mapping of proteomes was greatly enhanced by protein tagging for generic affinity purification methods and analysis by mass spectrometry (AP-MS). The high quality of AP-MS data permitted the development of proteomic navigation by sequential tagging of identified interactions. However AP-MS is laborious and limited to relatively high affinity protein-protein interactions. Proximity labeling, first with the biotin ligase BirA, termed BioID, and then with ascorbate peroxidase, termed APEX, permits a greater reach into the proteome than AP-MS enabling both the identification of a wider field and weaker protein-protein interactions. This additional reach comes with the need for stringent controls. Proximity labeling also permits experiments in living cells allowing spatiotemporal investigations of the proteome. Here we discuss proximity labeling with accompanying methodological descriptions for E. coli and mammalian cells.


Asunto(s)
Mapeo de Interacción de Proteínas/métodos , Proteómica/métodos , Coloración y Etiquetado/métodos , Animales , Ascorbato Peroxidasas/metabolismo , Biotina/química , Biotina/metabolismo , Biotinilación , Ligasas de Carbono-Nitrógeno/metabolismo , Línea Celular , Escherichia coli/enzimología , Proteínas de Escherichia coli/metabolismo , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/metabolismo , Espectrometría de Masas/métodos , Mapeo de Interacción de Proteínas/instrumentación , Proteínas Represoras/metabolismo , Análisis Espacio-Temporal
14.
iScience ; 14: 1-14, 2019 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-30921732

RESUMEN

The limited efficiency of the available tools for genetic manipulation of Pseudomonas limits fundamental research and utilization of this genus. We explored the properties of a lambda Red-like operon (BAS) from Pseudomonas aeruginosa phage Ab31 and a Rac bacteriophage RecET-like operon (RecTEPsy) from Pseudomonas syringae pv. syringae B728a. Compared with RecTEPsy, the BAS operon was functional at a higher temperature indicating potential to be a generic system for Pseudomonas. Owing to the lack of RecBCD inhibitor in the BAS operon, we added Redγ or Pluγ and found increased recombineering efficiencies in P. aeruginosa and Pseudomonas fluorescens but not in Pseudomonas putida and P. syringae. Overexpression of single-stranded DNA-binding protein enhanced recombineering in several contexts including RecET recombination in E. coli. The utility of these systems was demonstrated by engineering P. aeruginosa genomes to create an attenuated rhamnolipid producer. Our work enhances the potential for functional genomics in Pseudomonas.

15.
Genes Dev ; 33(9-10): 550-564, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30842216

RESUMEN

Epigenetic modifications can maintain or alter the inherent symmetry of the nucleosome. However, the mechanisms that deposit and/or propagate symmetry or asymmetry are not understood. Here we report that yeast Set1C/COMPASS (complex of proteins associated with Set1) is dimeric and, consequently, symmetrically trimethylates histone 3 Lys4 (H3K4me3) on promoter nucleosomes. Mutation of the dimer interface to make Set1C monomeric abolished H3K4me3 on most promoters. The most active promoters, particularly those involved in the oxidative phase of the yeast metabolic cycle, displayed H3K4me2, which is normally excluded from active promoters, and a subset of these also displayed H3K4me3. In wild-type yeast, deletion of the sole H3K4 demethylase, Jhd2, has no effect. However, in monomeric Set1C yeast, Jhd2 deletion increased H3K4me3 levels on the H3K4me2 promoters. Notably, the association of Set1C with the elongating polymerase was not perturbed by monomerization. These results imply that symmetrical H3K4 methylation is an embedded consequence of Set1C dimerism and that Jhd2 demethylates asymmetric H3K4me3. Consequently, rather than methylation and demethylation acting in opposition as logic would suggest, a dimeric methyltransferase and monomeric demethylase cooperate to eliminate asymmetry and focus symmetrical H3K4me3 onto selected nucleosomes. This presents a new paradigm for the establishment of epigenetic detail.


Asunto(s)
Epigénesis Genética/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Desmetilación , Dimerización , Eliminación de Gen , Histonas/metabolismo , Metilación , Mutagénesis , Nucleosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcripción Genética/genética
16.
Genetics ; 211(4): 1155-1177, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30765420

RESUMEN

To understand gene function, the cre/loxP conditional system is the most powerful available for temporal and spatial control of expression in mouse. However, the research community requires more cre recombinase expressing transgenic mouse strains (cre-drivers) that restrict expression to specific cell types. To address these problems, a high-throughput method for large-scale production that produces high-quality results is necessary. Further, endogenous promoters need to be chosen that drive cell type specific expression, or we need to further focus the expression by manipulating the promoter. Here we test the suitability of using knock-ins at the docking site 5' of Hprt for rapid development of numerous cre-driver strains focused on expression in adulthood, using an improved cre tamoxifen inducible allele (icre/ERT2), and testing a novel inducible-first, constitutive-ready allele (icre/f3/ERT2/f3). In addition, we test two types of promoters either to capture an endogenous expression pattern (MaxiPromoters), or to restrict expression further using minimal promoter element(s) designed for expression in restricted cell types (MiniPromoters). We provide new cre-driver mouse strains with applicability for brain and eye research. In addition, we demonstrate the feasibility and applicability of using the locus 5' of Hprt for the rapid generation of substantial numbers of cre-driver strains. We also provide a new inducible-first constitutive-ready allele to further speed cre-driver generation. Finally, all these strains are available to the research community through The Jackson Laboratory.


Asunto(s)
Encéfalo/metabolismo , Ojo/metabolismo , Técnicas de Sustitución del Gen/métodos , Ratones Transgénicos/genética , Tamoxifeno/farmacología , Activación Transcripcional/efectos de los fármacos , Animales , Efecto Fundador , Hipoxantina Fosforribosiltransferasa/genética , Hipoxantina Fosforribosiltransferasa/metabolismo , Integrasas/genética , Integrasas/metabolismo , Ratones , Ratones Endogámicos C57BL , Regiones Promotoras Genéticas
17.
Res Microbiol ; 170(2): 74-79, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30447257

RESUMEN

Abnormal blood vessels and hypoxic and necrotic regions are common features of solid tumors and related to the malignant phenotype and therapy resistance. Certain obligate or facultative anaerobic bacteria exhibit inherent ability to colonize and proliferate within solid tumors in vivo. Escherichia coli Nissle 1917 (EcN), a non-pathogenic probiotic in European markets, has been known to proliferate selectively in the interface between the viable and necrotic regions of solid tumors. The objective of this study was to establish a tumor-targeting therapy system using the genetically engineered EcN for targeted delivery of cytotoxic compounds, including colibactin, glidobactin and luminmide. Biosynthetic gene clusters of these cytotoxic compounds were introduced into EcN and the corresponding compounds were detected in the resultant recombinant EcN strains. The recombinant EcN showed significant cytotoxic activity in vitro and in vivo as well, and significantly suppressed the tumor growth. Together, this study confirmed efficient tumor-targeting colonization of EcN and demonstrated its potentiality in the tumor-specific delivery of cytotoxic compounds as a new tumor-targeting therapy system.


Asunto(s)
Sistemas de Liberación de Medicamentos , Proteínas de Escherichia coli/farmacología , Escherichia coli/genética , Ingeniería Genética/métodos , Neoplasias/terapia , Animales , Línea Celular Tumoral , Femenino , Humanos , Ratones , Ratones Desnudos , Familia de Multigenes , Péptidos/administración & dosificación , Péptidos Cíclicos/administración & dosificación , Policétidos/administración & dosificación , Probióticos , Proteínas Recombinantes/administración & dosificación
18.
Exp Hematol ; 69: 37-42, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30315824

RESUMEN

Disrupting the protein-protein interaction for molecularly targeted cancer therapeutics can be a challenging but promising strategy. Compounds that disrupt the interaction between menin, a chromatin-binding protein, and oncogenic mixed lineage leukemia fusion proteins (MLL-FPs) have shown significant promise in preclinical models of leukemia and have a high degree of selectivity for leukemia versus normal hematopoietic cells. Biochemical and structural studies demonstrate that, in addition to disrupting the menin-MLL-FP interaction, such compounds also inhibit menin-MLL1, menin-MLL2, and other menin-interacting proteins. Here, we address the degree to which disruption of menin-MLL-FP interactions or menin-MLL1/MLL2 interactions contribute to the antileukemia effect of menin inhibition. We show that Men1 deletion in MLL-AF9-transformed leukemia cells produces distinct cellular and molecular consequences compared with Mll1;Mll2 co-deletion and that compounds disrupting menin-MLL N-terminal interactions largely phenocopy menin loss. Moreover, we show that Mll1;Mll2-deficient leukemia cells exhibit enhanced sensitivity to menin interaction inhibitors, which is consistent with each regulating complementary genetic pathways. These data illustrate the heightened dependency of MLL-FPs on menin compared with wild-type MLL1/MLL2 for regulation of downstream target genes and argue that the predominant action of menin inhibitory compounds is through direct inhibition of MLL-FPs without significant contribution from MLL1/MLL2 inhibition.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Reordenamiento Génico , N-Metiltransferasa de Histona-Lisina/metabolismo , Leucemia Mieloide Aguda/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Animales , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , N-Metiltransferasa de Histona-Lisina/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Ratones , Ratones Noqueados , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteínas Proto-Oncogénicas/genética
19.
ACS Synth Biol ; 8(1): 137-147, 2019 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-30590919

RESUMEN

Refactoring biosynthetic pathways for enhanced secondary metabolite production is a central challenge for synthetic biology. Here we applied advanced DNA assembly methods and a uniform overexpression logic using constitutive promoters to achieve efficient heterologous production of the complex insecticidal macrolide spinosad. We constructed a 79-kb artificial gene cluster in which 23 biosynthetic genes were grouped into 7 operons, each with a strong constitutive promoter. Compared with the original gene cluster, the artificial gene cluster resulted in a 328-fold enhanced spinosad production in Streptomyces albus J1074. To achieve this goal, we applied the ExoCET DNA assembly method to build a plasmid from 13 GC-rich fragments with high efficiency in one step. Together with our previous direct cloning and recombineering tools, we present new synthetic biology options for refactoring large gene clusters for diverse applications.


Asunto(s)
Macrólidos/metabolismo , Familia de Multigenes/genética , Operón/genética , Streptomyces/metabolismo , Combinación de Medicamentos , Genes Sintéticos/genética , Regiones Promotoras Genéticas/genética , Biología Sintética/métodos
20.
Development ; 145(23)2018 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-30504434

RESUMEN

The mammalian male germline is sustained by a pool of spermatogonial stem cells (SSCs) that can transmit both genetic and epigenetic information to offspring. However, the mechanisms underlying epigenetic transmission remain unclear. The histone methyltransferase Kmt2b is highly expressed in SSCs and is required for the SSC-to-progenitor transition. At the stem-cell stage, Kmt2b catalyzes H3K4me3 at bivalent H3K27me3-marked promoters as well as at promoters of a new class of genes lacking H3K27me3, which we call monovalent. Monovalent genes are mainly activated in late spermatogenesis, whereas most bivalent genes are mainly not expressed until embryonic development. These data suggest that SSCs are epigenetically primed by Kmt2b in two distinguishable ways for the upregulation of gene expression both during the spermatogenic program and through the male germline into the embryo. Because Kmt2b is also the major H3K4 methyltransferase for bivalent promoters in embryonic stem cells, we also propose that Kmt2b has the capacity to prime stem cells epigenetically.


Asunto(s)
Embrión de Mamíferos/metabolismo , Células Germinativas/citología , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Regiones Promotoras Genéticas , Espermatogonias/citología , Células Madre/citología , Células Madre/metabolismo , Animales , Supervivencia Celular , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/genética , Masculino , Ratones , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteínas del Grupo Polycomb/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...