Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Kidney Int ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38692408

RESUMEN

Organ shortage is a major challenge in kidney transplantation but the use of older donors, often with co-morbidities, is hampered by inconsistent outcomes. Methods of accurately stratifying marginal donor organs by clinical and histological assessment are lacking. To better understand organ variability, we profiled the transcriptomes of 271 kidneys from deceased donors at retrieval. Following correction for biopsy composition, we assessed molecular pathways that associated with delayed, and sub-optimal one-year graft function. Analysis of cortical biopsies identified an adaptive immune gene-rich module that significantly associated with increasing age and worse outcomes. Cellular deconvolution using human kidney reference single cell transcriptomes confirmed an increase in kidney-specific B and T cell signatures, as well as kidney macrophage, myofibroblast and fibroblast gene sets in this module. Surprisingly, innate immune pathway and neutrophil gene signature enrichment was associated with better outcomes. Thus, our work uncovers cellular molecular features of pathological organ ageing, identifiable at kidney retrieval, with translational potential.

2.
Dev Cell ; 59(5): 595-612.e8, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38340720

RESUMEN

During kidney development, nephron epithelia arise de novo from fate-committed mesenchymal progenitors through a mesenchymal-to-epithelial transition (MET). Downstream of fate specification, transcriptional mechanisms that drive establishment of epithelial morphology are poorly understood. We used human iPSC-derived renal organoids, which recapitulate nephrogenesis, to investigate mechanisms controlling renal MET. Multi-ome profiling via snRNA-seq and ATAC-seq of organoids identified dynamic changes in gene expression and chromatin accessibility driven by activators and repressors throughout MET. CRISPR interference identified that paired box 8 (PAX8) is essential for initiation of MET in human renal organoids, contrary to in vivo mouse studies, likely by activating a cell-adhesion program. While Wnt/ß-catenin signaling specifies nephron fate, we find that it must be attenuated to allow hepatocyte nuclear factor 1-beta (HNF1B) and TEA-domain (TEAD) transcription factors to drive completion of MET. These results identify the interplay between fate commitment and morphogenesis in the developing human kidney, with implications for understanding both developmental kidney diseases and aberrant epithelial plasticity following adult renal tubular injury.


Asunto(s)
Riñón , Nefronas , Humanos , Ratones , Animales , Riñón/metabolismo , Diferenciación Celular/genética , Factores de Transcripción/metabolismo , Transducción de Señal , Transición Epitelial-Mesenquimal
3.
Cell ; 186(26): 5876-5891.e20, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38134877

RESUMEN

Harmonizing cell types across the single-cell community and assembling them into a common framework is central to building a standardized Human Cell Atlas. Here, we present CellHint, a predictive clustering tree-based tool to resolve cell-type differences in annotation resolution and technical biases across datasets. CellHint accurately quantifies cell-cell transcriptomic similarities and places cell types into a relationship graph that hierarchically defines shared and unique cell subtypes. Application to multiple immune datasets recapitulates expert-curated annotations. CellHint also reveals underexplored relationships between healthy and diseased lung cell states in eight diseases. Furthermore, we present a workflow for fast cross-dataset integration guided by harmonized cell types and cell hierarchy, which uncovers underappreciated cell types in adult human hippocampus. Finally, we apply CellHint to 12 tissues from 38 datasets, providing a deeply curated cross-tissue database with ∼3.7 million cells and various machine learning models for automatic cell annotation across human tissues.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Humanos , Bases de Datos Factuales , Análisis de la Célula Individual
4.
Cell Rep ; 42(8): 112991, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37590132

RESUMEN

Suboptimal responses to a primary vaccination course have been reported in the elderly, but there is little information regarding the impact of age on responses to booster third doses. Here, we show that individuals 70 years or older (median age 73, range 70-75) who received a primary two-dose schedule with AZD1222 and booster third dose with mRNA vaccine achieve significantly lower neutralizing antibody responses against SARS-CoV-2 spike pseudotyped virus compared with those younger than 70 (median age 66, range 54-69) at 1 month post booster. Impaired neutralization potency and breadth post third dose in the elderly is associated with circulating "atypical" spike-specific B cells expressing CD11c and FCRL5. However, when considering individuals who received three doses of mRNA vaccine, we did not observe differences in neutralization or enrichment in atypical B cells. This work highlights the finding that AdV and mRNA COVID-19 vaccine formats differentially instruct the memory B cell response.


Asunto(s)
COVID-19 , Anciano , Humanos , COVID-19/prevención & control , Vacunas contra la COVID-19 , ChAdOx1 nCoV-19 , SARS-CoV-2 , Vacunación
5.
Genome Biol ; 24(1): 189, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37582793

RESUMEN

The binding of transcription factors at proximal promoters and distal enhancers is central to gene regulation. Identifying regulatory motifs and quantifying their impact on expression remains challenging. Using a convolutional neural network trained on single-cell data, we infer putative regulatory motifs and cell type-specific importance. Our model, scover, explains 29% of the variance in gene expression in multiple mouse tissues. Applying scover to distal enhancers identified using scATAC-seq from the developing human brain, we identify cell type-specific motif activities in distal enhancers. Scover can identify regulatory motifs and their importance from single-cell data where all parameters and outputs are easily interpretable.


Asunto(s)
Elementos de Facilitación Genéticos , Regulación de la Expresión Génica , Humanos , Animales , Ratones , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regiones Promotoras Genéticas , Redes Neurales de la Computación , Motivos de Nucleótidos
6.
Blood ; 141(19): 2343-2358, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-36758207

RESUMEN

Classic Hodgkin lymphoma (cHL) has a rich immune infiltrate, which is an intrinsic component of the neoplastic process. Malignant Hodgkin Reed-Sternberg cells (HRSCs) create an immunosuppressive microenvironment by the expression of regulatory molecules, preventing T-cell activation. It has also been demonstrated that mononuclear phagocytes (MNPs) in the vicinity of HRSCs express similar regulatory mechanisms in parallel, and their presence in tissue is associated with inferior patient outcomes. MNPs in cHL have hitherto been identified by a small number of canonical markers and are usually described as tumor-associated macrophages. The organization of MNP networks and interactions with HRSCs remains unexplored at high resolution. Here, we defined the global immune-cell composition of cHL and nonlymphoma lymph nodes, integrating data across single-cell RNA sequencing, spatial transcriptomics, and multiplexed immunofluorescence. We observed that MNPs comprise multiple subsets of monocytes, macrophages, and dendritic cells (DCs). Classical monocytes, macrophages and conventional DC2s were enriched in the vicinity of HRSCs, but plasmacytoid DCs and activated DCs were excluded. Unexpectedly, cDCs and monocytes expressed immunoregulatory checkpoints PD-L1, TIM-3, and the tryptophan-catabolizing protein IDO, at the same level as macrophages. Expression of these molecules increased with age. We also found that classical monocytes are important signaling hubs, potentially controlling the retention of cDC2 and ThExh via CCR1-, CCR4-, CCR5-, and CXCR3-dependent signaling. Enrichment of the cDC2-monocyte-macrophage network in diagnostic biopsies is associated with early treatment failure. These results reveal unanticipated complexity and spatial polarization within the MNP compartment, further demonstrating their potential roles in immune evasion by cHL.


Asunto(s)
Enfermedad de Hodgkin , Humanos , Enfermedad de Hodgkin/diagnóstico , Células de Reed-Sternberg/metabolismo , Macrófagos/metabolismo , Monocitos/metabolismo , Inmunosupresores , Microambiente Tumoral
7.
Artículo en Inglés | MEDLINE | ID: mdl-36669256

RESUMEN

Accelerator mass spectrometry (AMS) is the method of choice for quantitation of low amounts of 14C-labeled biomolecules. Despite exquisite sensitivity, an important limitation of AMS is its inability to provide structural information about the analyte. This limitation is not critical when the labeled compounds are well-characterized prior to AMS analysis. However, analyte identity is important in other experiments where, for example, a compound is metabolized and the structures of its metabolites are not known. We previously described a moving wire interface that enables direct AMS measurement of liquid sample in the form of discrete drops or HPLC eluent without the need for individual fraction collection, termed liquid sample-AMS (LS-AMS). We now report the coupling of LS-AMS with a molecular mass spectrometer, providing parallel accelerator and molecular mass spectrometry (PAMMS) detection of analytes separated by liquid chromatography. The repeatability of the method was examined by performing repeated injections of 14C-labeled tryptophan, and relative standard deviations of the 14C peak areas were ≤10.57% after applying a normalization factor based on a standard. Five 14C-labeled amino acids were separated and detected to provide simultaneous quantitative AMS and structural MS data, and AMS results were compared with solid sample-AMS (SS-AMS) data using Bland-Altman plots. To demonstrate the utility of the workflow, yeast cells were grown in a medium with 14C-labeled tryptophan. The cell extracts were analyzed by PAMMS, and 14C was detected in tryptophan and its metabolite kynurenine.


Asunto(s)
Aminoácidos , Triptófano , Cromatografía Líquida de Alta Presión , Espectrometría de Masas/métodos , Cromatografía Liquida
8.
J Exp Med ; 219(6)2022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35551368

RESUMEN

Inborn errors of immunity (IEIs) unveil regulatory pathways of human immunity. We describe a new IEI caused by mutations in the GTPase of the immune-associated protein 6 (GIMAP6) gene in patients with infections, lymphoproliferation, autoimmunity, and multiorgan vasculitis. Patients and Gimap6-/- mice show defects in autophagy, redox regulation, and polyunsaturated fatty acid (PUFA)-containing lipids. We find that GIMAP6 complexes with GABARAPL2 and GIMAP7 to regulate GTPase activity. Also, GIMAP6 is induced by IFN-γ and plays a critical role in antibacterial immunity. Finally, we observed that Gimap6-/- mice died prematurely from microangiopathic glomerulosclerosis most likely due to GIMAP6 deficiency in kidney endothelial cells.


Asunto(s)
GTP Fosfohidrolasas , Síndromes de Inmunodeficiencia , Animales , Autofagia , Células Endoteliales/metabolismo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Humanos , Inflamación , Ratones
9.
Methods Mol Biol ; 2349: 1-10, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34718988

RESUMEN

Parallel accelerator and molecular mass spectrometry (PAMMS) is a powerful analytical technique capable of simultaneous quantitation of carbon-14 tracer and structural characterization of 14C-labeled biomolecules. Here we describe the use of PAMMS for the analysis of biological molecules separated by high-performance liquid chromatography. This protocol is intended to serve as a guide for researchers who need to perform PAMMS experiments using instrumentation available at resource centers such as the National User Resource for Biological Accelerator Mass Spectrometry at Lawrence Livermore National Laboratory.


Asunto(s)
Cromatografía Líquida de Alta Presión , Radioisótopos de Carbono , Espectrometría de Masas
10.
Immunol Rev ; 305(1): 111-136, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34821397

RESUMEN

There is an increasing appreciation that many innate and adaptive immune cell subsets permanently reside within non-lymphoid organs, playing a critical role in tissue homeostasis and defense. The best characterized are macrophages and tissue-resident T lymphocytes that work in concert with organ structural cells to generate appropriate immune responses and are functionally shaped by organ-specific environmental cues. The interaction of tissue epithelial, endothelial and stromal cells is also required to attract, differentiate, polarize and maintain organ immune cells in their tissue niche. All of these processes require dynamic regulation of cellular transcriptional programmes, with epigenetic mechanisms playing a critical role, including DNA methylation and post-translational histone modifications. A failure to appropriately regulate immune cell transcription inevitably results in inadequate or inappropriate immune responses and organ pathology. Here, with a focus on the mammalian kidney, an organ which generates differing regional environmental cues (including hypersalinity and hypoxia) due to its physiological functions, we will review the basic concepts of tissue immunity, discuss the technologies available to profile epigenetic modifications in tissue immune cells, including those that enable single-cell profiling, and consider how these mechanisms influence the development, phenotype, activation and function of different tissue immune cell subsets, as well as the immunological function of structural cells.


Asunto(s)
Señales (Psicología) , Epigénesis Genética , Animales , Metilación de ADN , Homeostasis , Humanos , Inmunidad Innata , Mamíferos , Linfocitos T
11.
iScience ; 24(11): 103326, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34805788

RESUMEN

Langerhans cells (LC) are skin-resident antigen-presenting cells that regulate immune responses to epithelial microorganisms. Human papillomavirus (HPV) infection can promote malignant epithelial transformation. As LCs are considered important for controlling HPV infection, we compared the transcriptome of murine LCs from skin transformed by K14E7 oncoprotein and from healthy skin. We identified transcriptome heterogeneity at the single cell level amongst LCs in normal skin, associated with ontogeny, cell cycle, and maturation. We identified a balanced co-existence of immune-stimulatory and immune-inhibitory LC cell states in normal skin that was significantly disturbed in HPV16 E7-transformed skin. Hyperplastic skin was depleted of immune-stimulatory LCs and enriched for LCs with an immune-inhibitory gene signature, and LC-keratinocyte crosstalk was dysregulated. We identified reduced expression of interleukin (IL)-34, a critical molecule for LC homeostasis. Enrichment of an immune-inhibitory LC gene signature and reduced levels of epithelial IL-34 were also found in human HPV-associated cervical epithelial cancers.

13.
Toxicol Sci ; 183(1): 49-59, 2021 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-34460930

RESUMEN

Impregnating military uniforms and outdoor clothing with the insecticide permethrin is an approach to reduce exposure to insect borne diseases and to repel pests and disease vectors such as mosquitos and sandflies, but the practice exposes wearers to prolonged dermal exposure to the pesticide. Key metabolite(s) from a low dose dermal exposure of permethrin were identified using accelerator mass spectrometry. Metabolite standards were synthesized and a high performance liquide chromatography (HPLC) elution protocol to separate individual metabolites in urine was developed. Six human subjects were exposed dermally on the forearm to 25 mg of permethrin containing 1.0 µCi of 14C for 8 h. Blood, saliva and urine samples were taken for 7d. Absorption/elimination rates and metabolite concentrations varied by individual. Average absorption was 0.2% of the dose. Serum concentrations rose until 12-24 h postdermal application then rapidly declined reaching predose levels by 72 h. Maximum saliva excretion occurred 6 h postdosing. The maximum urinary excretion rate occurred during 12-24 h; average elimination half-life was 56 h. 3-Phenoxybenzyl alcohol glucuronide was the most abundant metabolite identified when analyzing elution fractions, but most of the radioactivity was in still more polar fractions suggesting extensive degradative metabolism and for which there were no standards. Analyses of archived urine samples with the ultra performance liquid chromatography-accelerator mass spectrometry-mass spectrometry (UPLC-AMS-MS) system isolated a distinct polar metabolite but it was much diminished from the previous analyses a decade earlier.


Asunto(s)
Insecticidas , Permetrina , Animales , Biomarcadores , Cromatografía Líquida de Alta Presión , Humanos , Espectrometría de Masas
14.
Am J Transplant ; 21(1): 161-173, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32627324

RESUMEN

Thousands of kidneys from higher-risk donors are discarded annually because of the increased likelihood of complications posttransplant. Given the severe organ shortage, there is a critical need to improve utilization of these organs. To this end, normothermic machine perfusion (NMP) has emerged as a platform for ex vivo assessment and potential repair of marginal organs. In a recent study of 8 transplant-declined human kidneys on NMP, we discovered microvascular obstructions that impaired microvascular blood flow. However, the nature and physiologic impact of these lesions were unknown. Here, in a study of 39 human kidneys, we have identified that prolonged cold storage of human kidneys induces accumulation of fibrinogen within tubular epithelium. Restoration of normoxic conditions-either ex vivo during NMP or in vivo following transplant-triggered intravascular release of fibrinogen correlating with red blood cell aggregation and microvascular plugging. Combined delivery of plasminogen and tissue plasminogen activator during NMP lysed the plugs leading to a significant reduction in markers of renal injury, improvement in indicators of renal function, and improved delivery of vascular-targeted nanoparticles. Our study suggests a new mechanism of cold storage injury in marginal organs and provides a simple treatment with immediate translational potential.


Asunto(s)
Trasplante de Riñón , Preservación de Órganos , Humanos , Riñón , Trasplante de Riñón/efectos adversos , Perfusión , Activador de Tejido Plasminógeno
15.
Nat Immunol ; 21(11): 1408-1420, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32868930

RESUMEN

B lymphocyte development and selection are central to adaptive immunity and self-tolerance. These processes require B cell receptor (BCR) signaling and occur in bone marrow, an environment with variable hypoxia, but whether hypoxia-inducible factor (HIF) is involved is unknown. We show that HIF activity is high in human and murine bone marrow pro-B and pre-B cells and decreases at the immature B cell stage. This stage-specific HIF suppression is required for normal B cell development because genetic activation of HIF-1α in murine B cells led to reduced repertoire diversity, decreased BCR editing and developmental arrest of immature B cells, resulting in reduced peripheral B cell numbers. HIF-1α activation lowered surface BCR, CD19 and B cell-activating factor receptor and increased expression of proapoptotic BIM. BIM deletion rescued the developmental block. Administration of a HIF activator in clinical use markedly reduced bone marrow and transitional B cells, which has therapeutic implications. Together, our work demonstrates that dynamic regulation of HIF-1α is essential for normal B cell development.


Asunto(s)
Linfocitos B/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Linfopoyesis/genética , Animales , Subgrupos de Linfocitos B/inmunología , Subgrupos de Linfocitos B/metabolismo , Linfocitos B/citología , Linfocitos B/inmunología , Biomarcadores , Regulación de la Expresión Génica , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Cadenas Ligeras de Inmunoglobulina/genética , Inmunofenotipificación , Ratones , Ratones Noqueados , Edición de ARN , Receptores de Antígenos de Linfocitos B/metabolismo , Transducción de Señal , Activación Transcripcional
16.
Cell Rep ; 32(1): 107857, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32640223

RESUMEN

Macrophages play a central role in intestinal immunity, but inappropriate macrophage activation is associated with inflammatory bowel disease (IBD). Here, we identify granulocyte-macrophage colony stimulating factor (GM-CSF) as a critical regulator of intestinal macrophage activation in patients with IBD and mice with dextran sodium sulfate (DSS)-induced colitis. We find that GM-CSF drives the maturation and polarization of inflammatory intestinal macrophages, promoting anti-microbial functions while suppressing wound-healing transcriptional programs. Group 3 innate lymphoid cells (ILC3s) are a major source of GM-CSF in intestinal inflammation, with a strong positive correlation observed between ILC or CSF2 transcripts and M1 macrophage signatures in IBD mucosal biopsies. Furthermore, GM-CSF-dependent macrophage polarization results in a positive feedback loop that augmented ILC3 activation and type 17 immunity. Together, our data reveal an important role for GM-CSF-mediated ILC-macrophage crosstalk in calibrating intestinal macrophage phenotype to enhance anti-bacterial responses, while inhibiting pro-repair functions associated with fibrosis and stricturing, with important clinical implications.


Asunto(s)
Infecciones por Enterobacteriaceae/patología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Inflamación/patología , Intestinos/patología , Macrófagos/patología , Cicatrización de Heridas , Animales , Polaridad Celular , Citrobacter rodentium/fisiología , Colitis/complicaciones , Colitis/inmunología , Colitis/patología , Humanos , Inmunidad Innata , Linfocitos/inmunología , Activación de Macrófagos , Ratones Endogámicos C57BL , Fenotipo
17.
Immunity ; 53(1): 127-142.e7, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32562599

RESUMEN

Located within red pulp cords, splenic red pulp macrophages (RPMs) are constantly exposed to the blood flow, clearing senescent red blood cells (RBCs) and recycling iron from hemoglobin. Here, we studied the mechanisms underlying RPM homeostasis, focusing on the involvement of stromal cells as these cells perform anchoring and nurturing macrophage niche functions in lymph nodes and liver. Microscopy revealed that RPMs are embedded in a reticular meshwork of red pulp fibroblasts characterized by the expression of the transcription factor Wilms' Tumor 1 (WT1) and colony stimulating factor 1 (CSF1). Conditional deletion of Csf1 in WT1+ red pulp fibroblasts, but not white pulp fibroblasts, drastically altered the RPM network without altering circulating CSF1 levels. Upon RPM depletion, red pulp fibroblasts transiently produced the monocyte chemoattractants CCL2 and CCL7, thereby contributing to the replenishment of the RPM network. Thus, red pulp fibroblasts anchor and nurture RPM, a function likely conserved in humans.


Asunto(s)
Fibroblastos/metabolismo , Factor Estimulante de Colonias de Macrófagos/metabolismo , Macrófagos/inmunología , Bazo/citología , Proteínas WT1/metabolismo , Animales , Quimiocina CCL2/metabolismo , Quimiocina CCL7/metabolismo , Regulación de la Expresión Génica , Humanos , Inmunidad Innata/inmunología , Hierro/metabolismo , Factor Estimulante de Colonias de Macrófagos/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Monocitos/inmunología , Ratas , Transducción de Señal/inmunología , Bazo/metabolismo
18.
J Pathol ; 250(5): 693-704, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32125696

RESUMEN

Cells represent the basic building blocks of living organisms. Accurate characterisation of cellular phenotype, intercellular signalling networks, and the spatial organisation of cells within organs is crucial to deliver a better understanding of the processes underpinning physiology, and the perturbations that lead to disease. Single-cell methodologies have increased rapidly in scale and scope in recent years and are set to generate important insights into human disease. Here, we review current practices in nephropathology, which are dominated by relatively simple morphological descriptions of tissue biopsies based on their appearance using light microscopy. Bulk transcriptomics have more recently been used to explore glomerular and tubulointerstitial kidney disease, renal cancer, and the responses to injury and alloimmunity in kidney transplantation, generating novel disease insights and prognostic biomarkers. These studies set the stage for single-cell transcriptomic approaches that reveal cell-type-specific gene expression patterns in health and disease. These technologies allow genome-wide disease susceptibility genes to be interpreted with the knowledge of the specific cell populations within organs that express them, identifying candidate cell types for further study. Single-cell technologies are also moving beyond assaying individual cellular transcriptomes, to measuring the epigenetic landscape of single cells. Single-cell antigen-receptor gene sequencing also enables specific T- and B-cell clones to be tracked in different tissues and disease states. In the coming years these rich 'multi-omic' descriptions of kidney disease will enable histopathological descriptions to be comprehensively integrated with molecular phenotypes, enabling better disease classification and prognostication and the application of personalised treatment strategies. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Asunto(s)
Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Renales/genética , Neoplasias Renales/patología , Genoma , Humanos , Neoplasias Renales/diagnóstico , Fenotipo , Transcriptoma/fisiología
19.
Nat Rev Nephrol ; 16(2): 112-128, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31831877

RESUMEN

Advances in single-cell technologies are transforming our understanding of cellular identity. For instance, the application of single-cell RNA sequencing and mass cytometry technologies to the study of immune cell populations in blood, secondary lymphoid organs and the renal tract is helping researchers to map the complex immune landscape within the kidney, define cell ontogeny and understand the relationship of kidney-resident immune cells with their circulating counterparts. These studies also provide insights into the interactions of immune cell populations with neighbouring epithelial and endothelial cells in health, and across a range of kidney diseases and cancer. These data have translational potential and will aid the identification of drug targets and enable better prediction of off-target effects. The application of single-cell technologies to clinical renal biopsy samples, or even cells within urine, will improve diagnostic accuracy and assist with personalized prognostication for patients with various kidney diseases. A comparison of immune cell types in peripheral blood and secondary lymphoid organs in healthy individuals and in patients with systemic autoimmune diseases that affect the kidney will also help to unravel the mechanisms that underpin the breakdown in self-tolerance and propagation of autoimmune responses. Together, these immune cell atlases have the potential to transform nephrology.


Asunto(s)
Lesión Renal Aguda/inmunología , Enfermedades Autoinmunes/inmunología , Sistema Inmunológico/citología , Linfocitos/metabolismo , Insuficiencia Renal Crónica/inmunología , Análisis de la Célula Individual , Lesión Renal Aguda/genética , Lesión Renal Aguda/metabolismo , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/metabolismo , Citometría de Flujo , Humanos , Neoplasias Renales/genética , Neoplasias Renales/inmunología , Neoplasias Renales/metabolismo , Trasplante de Riñón , Leucocitos/inmunología , Leucocitos/metabolismo , Nefritis Lúpica/genética , Nefritis Lúpica/inmunología , Nefritis Lúpica/metabolismo , Linfocitos/inmunología , Pielonefritis/genética , Pielonefritis/inmunología , Pielonefritis/metabolismo , RNA-Seq , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/metabolismo , Análisis de Secuencia de ARN
20.
Science ; 365(6460): 1461-1466, 2019 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-31604275

RESUMEN

Tissue-resident immune cells are important for organ homeostasis and defense. The epithelium may contribute to these functions directly or by cross-talk with immune cells. We used single-cell RNA sequencing to resolve the spatiotemporal immune topology of the human kidney. We reveal anatomically defined expression patterns of immune genes within the epithelial compartment, with antimicrobial peptide transcripts evident in pelvic epithelium in the mature, but not fetal, kidney. A network of tissue-resident myeloid and lymphoid immune cells was evident in both fetal and mature kidney, with postnatal acquisition of transcriptional programs that promote infection-defense capabilities. Epithelial-immune cross-talk orchestrated localization of antibacterial macrophages and neutrophils to the regions of the kidney most susceptible to infection. Overall, our study provides a global overview of how the immune landscape of the human kidney is zonated to counter the dominant immunological challenge.


Asunto(s)
Riñón/inmunología , Macrófagos/citología , Neutrófilos/citología , Adulto , Animales , Células Epiteliales/citología , Femenino , Feto , Regulación del Desarrollo de la Expresión Génica , Humanos , Riñón/anatomía & histología , Riñón/citología , Linfocitos/citología , Ratones Endogámicos C57BL , Ratones Transgénicos , Células Mieloides/citología , RNA-Seq , Análisis de la Célula Individual , Infecciones Urinarias/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...