Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Matrix Biol ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38925225

RESUMEN

Cardiac fibroblasts are pivotal regulators of cardiac homeostasis and are essential in the repair of the heart after myocardial infarction (MI), but their function can also become dysregulated, leading to adverse cardiac remodelling involving both fibrosis and hypertrophy. MicroRNAs (miRNAs) are noncoding RNAs that target mRNAs to prevent their translation, with specific miRNAs showing differential expression and regulation in cardiovascular disease. Here, we show that miR-214-3p is enriched in the fibroblast fraction of the murine heart, and its levels are increased with cardiac remodelling associated with heart failure, or in the acute phase after experimental MI. Tandem mass tagging proteomics and in-silico network analyses were used to explore protein targets regulated by miR-214-3p in cultured human cardiac fibroblasts from multiple donors. Overexpression of miR-214-3p by miRNA mimics resulted in decreased expression and activity of the Piezo1 mechanosensitive cation channel, increased expression of the entire lysyl oxidase (LOX) family of collagen cross-linking enzymes, and decreased expression of an array of mitochondrial proteins, including mitofusin-2 (MFN2), resulting in mitochondrial dysfunction, as measured by citrate synthase and Seahorse mitochondrial respiration assays. Collectively, our data suggest that miR-214-3p is an important regulator of cardiac fibroblast phenotypes and functions key to cardiac remodelling, and that this miRNA represents a potential therapeutic target in cardiovascular disease.

2.
Cells ; 11(7)2022 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-35406763

RESUMEN

PIEZO1 is a subunit of mechanically-activated, nonselective cation channels. Gain-of-function PIEZO1 mutations are associated with dehydrated hereditary stomatocytosis (DHS), a type of anaemia, due to abnormal red blood cell function. Here, we hypothesised additional effects on the heart. Consistent with this hypothesis, mice engineered to contain the M2241R mutation in PIEZO1 to mimic a DHS mutation had increased cardiac mass and interventricular septum thickness at 8-12 weeks of age, without altered cardiac contractility. Myocyte size was greater and there was increased expression of genes associated with cardiac hypertrophy (Anp, Acta1 and ß-MHC). There was also cardiac fibrosis, increased expression of Col3a1 (a gene associated with fibrosis) and increased responses of isolated cardiac fibroblasts to PIEZO1 agonism. The data suggest detrimental effects of excess PIEZO1 activity on the heart, mediated in part by amplified PIEZO1 function in cardiac fibroblasts.


Asunto(s)
Cardiomegalia , Mutación con Ganancia de Función , Canales Iónicos , Animales , Cardiomegalia/genética , Fibrosis , Canales Iónicos/genética , Ratones
3.
Cells ; 10(5)2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33922466

RESUMEN

Cardiac fibroblasts (CF) play a pivotal role in preserving myocardial function and integrity of the heart tissue after injury, but also contribute to future susceptibility to heart failure. CF sense changes to the cardiac environment through chemical and mechanical cues that trigger changes in cellular function. In recent years, mechanosensitive ion channels have been implicated as key modulators of a range of CF functions that are important to fibrotic cardiac remodelling, including cell proliferation, myofibroblast differentiation, extracellular matrix turnover and paracrine signalling. To date, seven mechanosensitive ion channels are known to be functional in CF: the cation non-selective channels TRPC6, TRPM7, TRPV1, TRPV4 and Piezo1, and the potassium-selective channels TREK-1 and KATP. This review will outline current knowledge of these mechanosensitive ion channels in CF, discuss evidence of the mechanosensitivity of each channel, and detail the role that each channel plays in cardiac remodelling. By better understanding the role of mechanosensitive ion channels in CF, it is hoped that therapies may be developed for reducing pathological cardiac remodelling.


Asunto(s)
Reprogramación Celular , Matriz Extracelular/fisiología , Fibroblastos/fisiología , Canales Iónicos/fisiología , Mecanotransducción Celular , Miocitos Cardíacos/fisiología , Animales , Señalización del Calcio , Fibroblastos/citología , Humanos , Miocitos Cardíacos/citología
4.
Anal Biochem ; 476: 36-9, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25677265

RESUMEN

Although short tandem repeat profiling is extremely powerful in identifying individuals from crime scene stains, it is unable to differentiate between monozygotic (MZ) twins. Efforts to address this include mutation analysis through whole genome sequencing and through DNA methylation studies. Methylation of DNA is affected by environmental factors; thus, as MZ twins age, their DNA methylation patterns change. This can be characterized by bisulfite treatment followed by pyrosequencing. However, this can be time-consuming and expensive; thus, it is unlikely to be widely used by investigators. If the sequences are different, then in theory the melting temperature should be different. Thus, the aim of this study was to assess whether high-resolution melt curve analysis can be used to differentiate between MZ twins. Five sets of MZ twins provided buccal swabs that underwent extraction, quantification, bisulfite treatment, polymerase chain reaction amplification and high-resolution melting curve analysis targeting two markers, Alu-E2F3 and Alu-SP. Significant differences were observed between all MZ twins targeting Alu-E2F3 and in four of five MZ twins targeting Alu-SP (P<0.05). Thus, it has been demonstrated that bisulfite treatment followed by high-resolution melting curve analysis could be used to differentiate between MZ twins.


Asunto(s)
Metilación de ADN/genética , Gemelos Monocigóticos/genética , Genética Forense , Humanos , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...