Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
J Exp Biol ; 208(Pt 6): 1201-8, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15767318

RESUMEN

Rates of standard metabolism (SMR) are highly variable among individuals within vertebrate populations. Because SMR contributes a substantial proportion of an individual's energy budget, among-individual variation in this trait may affect other energetic processes, and potentially fitness. Here, we examine three potential proximate correlates of variation in SMR: organ mass, serum T4 thyroxine and relative mitochondrial content, using flow cytometry. Body-mass-adjusted kidney mass correlated with SMR, but liver, heart, small intestine and gastrocnemius did not. Thyroxine correlated with SMR, as did mitochondrial content. These results suggest several novel proximate physiological and morphological mechanisms that may contribute to among-individual variation in SMR. Variation in SMR may be maintained by diverse environmental conditions. Some conditions, such as low resource availability, may favor individuals with a low SMR, through small organ size, or low thyroxine or mitochondrial content. Other conditions, such as high resource availability, may favor individuals with a high SMR, through large organ size, or high thyroxine or mitochondrial content.


Asunto(s)
Metabolismo Basal/fisiología , Mitocondrias , Rana pipiens/fisiología , Tiroxina/sangre , Vísceras/anatomía & histología , Animales , Citometría de Flujo , Masculino , Músculo Esquelético/anatomía & histología , Tamaño de los Órganos , Rana pipiens/anatomía & histología
3.
Proc Natl Acad Sci U S A ; 99(13): 8754-9, 2002 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-12077313

RESUMEN

Quantitative evolutionary design involves the numerical relationships, evolved through natural selection, of biological capacities to each other and to natural loads. Here we study the relation of nutrient-processing capacities of the intestine and of organs beyond it (such as liver and kidneys) to each other and to natural loads of nutrients normally consumed. To control experimentally the rate of nutrient delivery to organs beyond the intestine, we administered nutrients directly into the veins of rats by the method of total parenteral nutrition (TPN). Control rats consuming the TPN solution by mouth ingested glucose at 42 mmol/day and processed it completely, as gauged by negligible appearance of glucose in urine and feces. Experimental rats receiving TPN were able to process infused glucose completely at rates up to 92 mmol/day. At higher infusion rates, they were unable to process further glucose, as gauged by rises in serum and urinary glucose levels and serum osmolality. At the highest infusion rates, they exhibited diuresis, dehydration, and both decreased weight gain and survival. These symptoms closely resemble the human diabetic condition known as nonketotic hypertonicity. Thus, a rat's body has a safety factor of 2.2 (=92/42) for glucose processing: it can process glucose at a rate 2.2 times its voluntary intake. This safety factor represents apparent excess capacity that may have evolved to process other nutrients converted into glucose, to minimize the risk of loads swamping capacities, to handle suddenly increased nutrient requirements, or to effect rapid mobilization of glucose.


Asunto(s)
Evolución Biológica , Glucosa/metabolismo , Animales , Intestino Delgado/metabolismo , Riñón/metabolismo , Hígado/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley
5.
Zoology (Jena) ; 105(2): 147-51, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-16351863

RESUMEN

The allocation of energy to various components of an individual's energy budget is often viewed as a competitive process. As such, a tradeoff may exist between production (growth) and maintenance metabolism. One view of a potential tradeoff, termed "the principle of allocation", suggests that individuals with lower maintenance metabolic expenditures may have higher growth rates. To determine whether such a tradeoff exists, I analyzed the relationship between growth rate and maintenance metabolism of 225 juvenile snapping turtles housed in the laboratory. I measured growth from hatching to 6 months of age, and then measured oxygen consumption and calculated standard metabolic rate. Mean growth rate was 0.19 g d(-) and mean standard metabolic rate (SMR) was 1.41 kJ d(-). Maintenance metabolism and growth were negatively correlated after both were adjusted for body mass. The results support the "principle of allocation" theory: individuals with higher standard metabolic rates tended to have low growth rates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...