Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Malar J ; 13: 179, 2014 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-24885206

RESUMEN

BACKGROUND: Access to timely and accurate diagnostic tests has a significant impact in the management of diseases of global concern such as malaria. While molecular diagnostics satisfy this need effectively in developed countries, barriers in technology, reagent storage, cost and expertise have hampered the introduction of these methods in developing countries. In this study a simple, lab-on-chip PCR diagnostic was created for malaria that overcomes these challenges. METHODS: The platform consists of a disposable plastic chip and a low-cost, portable, real-time PCR machine. The chip contains a desiccated hydrogel with reagents needed for Plasmodium specific PCR. Chips can be stored at room temperature and used on demand by rehydrating the gel with unprocessed blood, avoiding the need for sample preparation. These chips were run on a custom-built instrument containing a Peltier element for thermal cycling and a laser/camera setup for amplicon detection. RESULTS: This diagnostic was capable of detecting all Plasmodium species with a limit of detection for Plasmodium falciparum of 2 parasites/µL of blood. This exceeds the sensitivity of microscopy, the current standard for diagnosis in the field, by ten to fifty-fold. In a blind panel of 188 patient samples from a hyper-endemic region of malaria transmission in Uganda, the diagnostic had high sensitivity (97.4%) and specificity (93.8%) versus conventional real-time PCR. The test also distinguished the two most prevalent malaria species in mixed infections, P. falciparum and Plasmodium vivax. A second blind panel of 38 patient samples was tested on a streamlined instrument with LED-based excitation, achieving a sensitivity of 96.7% and a specificity of 100%. CONCLUSIONS: These results describe the development of a lab-on-chip PCR diagnostic from initial concept to ready-for-manufacture design. This platform will be useful in front-line malaria diagnosis, elimination programmes, and clinical trials. Furthermore, test chips can be adapted to detect other pathogens for a differential diagnosis in the field. The flexibility, reliability, and robustness of this technology hold much promise for its use as a novel molecular diagnostic platform in developing countries.


Asunto(s)
Dispositivos Laboratorio en un Chip , Malaria/diagnóstico , Técnicas de Diagnóstico Molecular/instrumentación , Técnicas de Diagnóstico Molecular/métodos , Plasmodium/aislamiento & purificación , Reacción en Cadena de la Polimerasa/instrumentación , Reacción en Cadena de la Polimerasa/métodos , Adolescente , Adulto , Femenino , Humanos , Malaria/parasitología , Plasmodium/clasificación , Embarazo , Sensibilidad y Especificidad , Uganda , Adulto Joven
2.
Analyst ; 133(3): 331-8, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18299747

RESUMEN

We present an inexpensive, portable and integrated microfluidic instrument that is optimized to perform genetic amplification and analysis on a single sample. Biochemical reactions and analytical separations for genetic analysis are performed within tri-layered glass-PDMS microchips. The microchip itself consists of integrated pneumatically-actuated valves and pumps for fluid handling, a thin-film resistive element that acts simultaneously as a heater and a temperature sensor, and channels for capillary electrophoresis (CE). The platform is comprised of high voltage circuitry, an optical assembly consisting of a laser diode and a charged coupled device (CCD) camera, circuitry for thermal control, and mini-pumps to generate vacuum/pressure to operate the on-chip diaphragm-based pumps and valves. Using this microchip and instrument, we demonstrate an integration of reverse transcription (RT), polymerase chain reaction (PCR), and capillary electrophoresis (CE). The novelty of this system lies in the cost-effective integration of microfluidics, optics, and electronics to realize a fully portable and inexpensive system (on the order of $1000 in component costs) for performing both genetic amplification and analysis - the basis of many medical diagnostics. We believe that this combination of portability, cost-effectiveness and performance will enable more accessible healthcare.


Asunto(s)
Electroforesis por Microchip/instrumentación , Análisis por Micromatrices , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Animales , Electroforesis por Microchip/métodos , Diseño de Equipo , Humanos , Microglobulina beta-2/genética
3.
J Mol Diagn ; 9(4): 521-9, 2007 09.
Artículo en Inglés | MEDLINE | ID: mdl-17690215

RESUMEN

Prospective clinical pharmacogenetic testing of the thiopurine S-methyltransferase gene remains to be realized despite the large body of evidence demonstrating clinical benefit for the patient and cost effectiveness for health care systems. We describe an entirely microchip-based method to genotype for common single nucleotide polymorphisms in the thiopurine S-methyltransferase gene that lead to serious adverse drug reactions for patients undergoing thiopurine therapy. Restriction fragment length polymorphism and allele-specific polymerase chain reaction have been adapted to a microfluidic chip-based polymerase chain reaction and capillary electrophoresis platform to genotype the common *2, *3A, and *3C functional alleles. In total, 80 patients being treated with thiopurines were genotyped, with 100% concordance between microchip and conventional methods. This is the first report of single nucleotide polymorphism detection using portable instrumentation and represents a significant step toward miniaturized for personalized treatment and automated point-of-care testing.


Asunto(s)
Metiltransferasas/genética , Microfluídica/métodos , Polimorfismo de Nucleótido Simple/genética , Compuestos de Sulfhidrilo/efectos adversos , Electroforesis Capilar , Genotipo , Humanos , Procedimientos Analíticos en Microchip , Reacción en Cadena de la Polimerasa , Polimorfismo de Longitud del Fragmento de Restricción , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...