Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 128(14): 146804, 2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35476487

RESUMEN

We consider a PT-symmetric Fermi gas with an exceptional point, representing the critical point between PT-symmetric and symmetry broken phases. The low energy spectrum remains linear in momentum and is identical to that of a Hermitian Fermi gas. The fermionic Green's function decays in a power law fashion for large distances, as expected from gapless excitations, although the exponent is reduced from -1 due to the quantum Zeno effect. In spite of the gapless nature of the excitations, the ground state entanglement entropy saturates to a finite value, independent of the subsystem size due to the non-Hermitian correlation length intrinsic to the system. Attractive or repulsive interaction drives the system into the PT-symmetry broken regime or opens up a gap and protects PT symmetry, respectively. Our results challenge the concept of universality in non-Hermitian systems, where quantum criticality can be masked due to non-Hermiticity.

2.
Phys Rev Lett ; 128(1): 016802, 2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-35061493

RESUMEN

Linear response theory plays a prominent role in various fields of physics and provides us with extensive information about the thermodynamics and dynamics of quantum and classical systems. Here we develop a general theory for the linear response in non-Hermitian systems with nonunitary dynamics and derive a modified Kubo formula for the generalized susceptibility for an arbitrary (Hermitian and non-Hermitian) system and perturbation. We use this to evaluate the dynamical response of a non-Hermitian, one-dimensional Dirac model with imaginary and real masses, perturbed by a time-dependent electric field. The model has a rich phase diagram, and in particular, features a tachyon phase, where excitations travel faster than an effective speed of light. Surprisingly, we find that the dc conductivity of tachyons is finite, and the optical sum rule is exactly satisfied for all masses. Our results highlight the peculiar properties of the Kubo formula for non-Hermitian systems and are applicable for a large variety of settings.

3.
Phys Rev Lett ; 108(9): 096802, 2012 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-22463658

RESUMEN

We study a one-dimensional wire with strong Rashba and Dresselhaus spin-orbit coupling (SOC), which supports Majorana fermions when subject to a Zeeman magnetic field and in the proximity of a superconductor. Using both analytical and numerical techniques we calculate the electronic spin texture of the Majorana end states. We find that the spin polarization of these states depends on the relative magnitude of the Rashba and Dresselhaus SOC components. Moreover, we define and calculate a local "Majorana polarization" and "Majorana density" and argue that they can be used as order parameters to characterize the topological transition between the trivial system and the system exhibiting Majorana bound modes. We find that the local Majorana polarization is correlated to the transverse spin polarization, and we propose to test the presence of Majorana fermions in a 1D system by a spin-polarized density of states measurement.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA