Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 9(2): eadc8825, 2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36638181

RESUMEN

Metastatic disease is a major cause of death for patients with melanoma. Melanoma cells can become metastatic not only due to cell-intrinsic plasticity but also due to cancer-induced protumorigenic remodeling of the immune microenvironment. Here, we report that innate immune surveillance by natural killer (NK) cells is bypassed by human melanoma cells expressing the stem cell marker NGFR. Using in vitro and in vivo cytotoxic assays, we show that NGFR protects melanoma cells from NK cell-mediated killing and, furthermore, boosts metastasis formation in a mouse model with adoptively transferred human NK cells. Mechanistically, NGFR leads to down-regulation of NK cell activating ligands and simultaneous up-regulation of the fatty acid stearoyl-coenzyme A desaturase (SCD) in melanoma cells. Notably, pharmacological and small interfering RNA-mediated inhibition of SCD reverted NGFR-induced NK cell evasion in vitro and in vivo. Hence, NGFR orchestrates immune control antagonizing pathways to protect melanoma cells from NK cell clearance, which ultimately favors metastatic disease.


Asunto(s)
Antineoplásicos , Melanoma , Ratones , Animales , Humanos , Línea Celular Tumoral , Melanoma/patología , Células Asesinas Naturales , Lípidos , Microambiente Tumoral , Proteínas del Tejido Nervioso/metabolismo , Receptores de Factor de Crecimiento Nervioso/metabolismo
2.
Dev Cell ; 58(3): 174-191.e8, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36706755

RESUMEN

The blood barriers of the nervous system protect neural environments but can hinder therapeutic accessibility. The blood-brain barrier (BBB) is well characterized, consisting of endothelial cells with specialized tight junctions and low levels of transcytosis, properties conferred by contacting pericytes and astrocytes. In contrast, the blood-nerve barrier (BNB) of the peripheral nervous system is poorly defined. Here, we characterize the structure of the mammalian BNB, identify the processes that confer barrier function, and demonstrate how the barrier can be opened in response to injury. The homeostatic BNB is leakier than the BBB, which we show is due to higher levels of transcytosis. However, the barrier is reinforced by macrophages that specifically engulf leaked materials, identifying a role for resident macrophages as an important component of the BNB. Finally, we demonstrate the exploitation of these processes to effectively deliver RNA-targeting therapeutics to peripheral nerves, indicating new treatment approaches for nervous system pathologies.


Asunto(s)
Barrera Hematonerviosa , Células Endoteliales , Animales , Barrera Hematonerviosa/fisiología , Células Endoteliales/fisiología , Barrera Hematoencefálica/fisiología , Macrófagos , Pericitos/fisiología , Mamíferos
3.
Dev Cell ; 57(19): 2249-2250, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36220078

RESUMEN

Neural crest cells arise in the neurectoderm of vertebrate embryos, but their developmental potential goes way beyond neurectodermal derivatives. In this issue of Developmental Cell, Hovland et al. reveal that neural crest cells re-employ embryonic stem cell factors in combination with specific transcription factors to enable their broad potential.


Asunto(s)
Cresta Neural , Células Madre Pluripotentes , Animales , Diferenciación Celular , Regulación del Desarrollo de la Expresión Génica , Factor de Células Madre , Factores de Transcripción , Vertebrados
4.
EMBO J ; 41(17): e111955, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35894449

RESUMEN

Schwann cell precursors (SCPs) are transient glial progenitors that are important for the formation of late neural crest derivatives, yet their heterogeneity and developmental potential remain incompletely understood. In this issue, Kastriti, Faure, von Ahsen et al (2022) use comprehensive single-cell RNA sequencing analyses to identify a transient "hub" state common to SCPs and neural crest cells (NCCs), revealing a striking similarity of SCPs to late migrating NCCs. These results raise important questions about the potential role of such a state in adult tissue regeneration and tumourigenesis.


Asunto(s)
Cresta Neural , Células de Schwann , Diferenciación Celular , Neurogénesis , Neuroglía
5.
Nat Commun ; 12(1): 5056, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34417458

RESUMEN

Melanoma cells rely on developmental programs during tumor initiation and progression. Here we show that the embryonic stem cell (ESC) factor Sall4 is re-expressed in the Tyr::NrasQ61K; Cdkn2a-/- melanoma model and that its expression is necessary for primary melanoma formation. Surprisingly, while Sall4 loss prevents tumor formation, it promotes micrometastases to distant organs in this melanoma-prone mouse model. Transcriptional profiling and in vitro assays using human melanoma cells demonstrate that SALL4 loss induces a phenotype switch and the acquisition of an invasive phenotype. We show that SALL4 negatively regulates invasiveness through interaction with the histone deacetylase (HDAC) 2 and direct co-binding to a set of invasiveness genes. Consequently, SALL4 knock down, as well as HDAC inhibition, promote the expression of an invasive signature, while inhibition of histone acetylation partially reverts the invasiveness program induced by SALL4 loss. Thus, SALL4 appears to regulate phenotype switching in melanoma through an HDAC2-mediated mechanism.


Asunto(s)
Epigénesis Genética , Melanoma/genética , Melanoma/patología , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Factor de Células Madre/metabolismo , Factores de Transcripción/metabolismo , Acetilación , Animales , Secuencia de Bases , Carcinogénesis/genética , Carcinogénesis/patología , Adhesión Celular/genética , Línea Celular Tumoral , Linaje de la Célula , Proliferación Celular , Proteínas de Unión al ADN/metabolismo , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Histona Desacetilasa 2/metabolismo , Histonas/metabolismo , Humanos , Melanocitos/metabolismo , Melanocitos/patología , Ratones Desnudos , Ratones Transgénicos , Invasividad Neoplásica , Micrometástasis de Neoplasia , Unión Proteica , Carga Tumoral
6.
Glia ; 67(11): 2203-2215, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31215712

RESUMEN

How tissues are maintained over a lifetime and repaired following injury are fundamental questions in biology with a disruption to these processes underlying pathologies such as cancer and degenerative disorders. It is becoming increasingly clear that each tissue has a distinct mechanism to maintain homeostasis and respond to injury utilizing different types of stem/progenitor cell populations depending on the insult and/or with a contribution from more differentiated cells that are able to dedifferentiate to aid tissue regeneration. Peripheral nerves are highly quiescent yet show remarkable regenerative capabilities. Remarkably, there is no evidence for a classical stem cell population, rather all cell-types within the nerve are able to proliferate to produce new nerve tissue. Co-ordinating the regeneration of this tissue are Schwann cells (SCs), the main glial cells of the peripheral nervous system. SCs exist in architecturally stable structures that can persist for the lifetime of an animal, however, they are not postmitotic, in that following injury they are reprogrammed at high efficiency to a progenitor-like state, with these cells acting to orchestrate the nerve regeneration process. During nerve regeneration, SCs show little plasticity, maintaining their identity in the repaired tissue. However, once free of the nerve environment they appear to exhibit increased plasticity with reported roles in the repair of other tissues. In this review, we will discuss the mechanisms underlying the homeostasis and regeneration of peripheral nerves and how reprogrammed progenitor-like SCs have broader roles in the repair of other tissues with implications for pathologies such as cancer.


Asunto(s)
Plasticidad de la Célula/fisiología , Homeostasis/fisiología , Regeneración Nerviosa/fisiología , Nervios Periféricos/fisiología , Animales , Diferenciación Celular/fisiología , Humanos , Plasticidad Neuronal , Nervios Periféricos/patología , Células de Schwann/metabolismo
7.
Development ; 145(24)2018 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-30413560

RESUMEN

Peripheral nerves are highly regenerative, in contrast to the poor regenerative capabilities of the central nervous system (CNS). Here, we show that adult peripheral nerve is a more quiescent tissue than the CNS, yet all cell types within a peripheral nerve proliferate efficiently following injury. Moreover, whereas oligodendrocytes are produced throughout life from a precursor pool, we find that the corresponding cell of the peripheral nervous system, the myelinating Schwann cell (mSC), does not turn over in the adult. However, following injury, all mSCs can dedifferentiate to the proliferating progenitor-like Schwann cells (SCs) that orchestrate the regenerative response. Lineage analysis shows that these newly migratory, progenitor-like cells redifferentiate to form new tissue at the injury site and maintain their lineage, but can switch to become a non-myelinating SC. In contrast, increased plasticity is observed during tumourigenesis. These findings show that peripheral nerves have a distinct mechanism for maintaining homeostasis and can regenerate without the need for an additional stem cell population.This article has an associated 'The people behind the papers' interview.


Asunto(s)
Sistema Nervioso Central/fisiología , Homeostasis , Regeneración Nerviosa/fisiología , Células-Madre Neurales/citología , Nervios Periféricos/fisiología , Animales , Axones/metabolismo , Carcinogénesis/patología , Proliferación Celular , Proteínas de la Matriz Extracelular/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Vaina de Mielina/metabolismo , Células-Madre Neurales/metabolismo , Plasticidad Neuronal , Nervios Periféricos/citología , Nervios Periféricos/ultraestructura , Células de Schwann/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...