Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Toxins (Basel) ; 15(12)2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-38133204

RESUMEN

Podocyte dysfunction plays a crucial role in renal injury and is identified as a key contributor to proteinuria in Fabry disease (FD), primarily impacting glomerular filtration function (GFF). The α3ß1 integrins are important for podocyte adhesion to the glomerular basement membrane, and disturbances in these integrins can lead to podocyte injury. Therefore, this study aimed to assess the effects of chloroquine (CQ) on podocytes, as this drug can be used to obtain an in vitro condition analogous to the FD. Murine podocytes were employed in our experiments. The results revealed a dose-dependent reduction in cell viability. CQ at a sub-lethal concentration (1.0 µg/mL) induced lysosomal accumulation significantly (p < 0.0001). Morphological changes were evident through scanning electron microscopy and immunofluorescence, highlighting alterations in F-actin and nucleus morphology. No significant changes were observed in the gene expression of α3ß1 integrins via RT-qPCR. Protein expression of α3 integrin was evaluated with Western Blotting and immunofluorescence, demonstrating its lower detection in podocytes exposed to CQ. Our findings propose a novel in vitro model for exploring secondary Fabry nephropathy, indicating a modulation of α3ß1 integrin and morphological alterations in podocytes under the influence of CQ.


Asunto(s)
Enfermedad de Fabry , Integrina alfa3beta1 , Enfermedades Renales , Podocitos , Animales , Ratones , Enfermedad de Fabry/metabolismo , Integrina alfa3beta1/genética , Integrina alfa3beta1/metabolismo , Enfermedades Renales/metabolismo , Podocitos/metabolismo , Insuficiencia Renal
2.
Toxins (Basel) ; 15(11)2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37999512

RESUMEN

The precise mechanisms underlying the cardiovascular complications due to acute kidney injury (AKI) and the retention of uremic toxins like p-cresyl sulfate (PCS) remain incompletely understood. The objective of this study was to evaluate the renocardiac effects of PCS administration in animals subjected to AKI induced by ischemia and reperfusion (IR) injury. C57BL6 mice were subjected to distinct protocols: (i) administration with PCS (20, 40, or 60 mg/L/day) for 15 days and (ii) AKI due to unilateral IR injury associated with PCS administration for 15 days. The 20 mg/L dose of PCS led to a decrease in renal mass, an increase in the gene expression of Cystatin C and kidney injury molecule 1 (KIM-1), and a decrease in the α-actin in the heart. During AKI, PCS increased the renal injury biomarkers compared to control; however, it did not exacerbate these markers. Furthermore, PCS did not enhance the cardiac hypertrophy observed after 15 days of IR. An increase, but not potentialized, in the cardiac levels of interleukin (IL)-1ß and IL-6 in the IR group treated with PCS, as well as in the injured kidney, was also noticed. In short, PCS administration did not intensify kidney injury, inflammation, and cardiac outcomes after AKI.


Asunto(s)
Lesión Renal Aguda , Daño por Reperfusión , Animales , Ratones , Sulfatos , Ratones Endogámicos C57BL , Riñón , Isquemia/complicaciones , Daño por Reperfusión/complicaciones
3.
J Pharm Biomed Anal ; 229: 115339, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-36963247

RESUMEN

Chronic kidney disease (CKD) is a serious public health issue affecting thousands of people worldwide. CKD diagnosis is usually made by Estimated Glomerular Filtration Rate (eGFR) and albuminuria, which limit the knowledge of the mechanisms behind CKD progression. The aim of the present study was to identify changes in the metabolomic profile that occur as CKD advances. In this sense, 77 plasma samples from patients with CDK were evaluated by 1D and 2D Nuclear Magnetic Resonance Spectroscopy (NMR). The NMR data showed significant changes in the metabolomic profile of CKD patients and the control group. Principal component analysis (PCA) clustered CKD and control patients into three distinct groups, control, stage 1 (G1)-stage 4 (G4) and stage 5 (G5). Lactate, glucose, acetate and creatinine were responsible for discriminating the control group from all the others CKD stages. Valine, alanine, glucose, creatinine, glutamate and lactate were responsible for the clustering of G1-G4 stages. G5 was discriminated by calcium ethylenediamine tetraacetic acid, magnesium ethylenediamine tetraacetic acid, creatinine, betaine/choline/trimethylamine N-oxide (TMAO), lactate and acetate. CKD G5 plasma pool which was submitted in MetaboAnalyst 4.0 platform (MetPA) analysis and showed 13 metabolic pathways involved in CKD physiopathology. Metabolic changes associated with glycolysis and gluconeogenesis allowed discriminating between CKD and control patients. The determination of involved molecules in TMAO generation in G5 suggests an important role in this uremic toxin linked to CKD and cardiovascular diseases. The aforementioned results propose the feasibility of metabolic assessment of CKD by NMR during treatment and disease progression.


Asunto(s)
Insuficiencia Renal Crónica , Humanos , Espectroscopía de Protones por Resonancia Magnética , Creatinina , Insuficiencia Renal Crónica/diagnóstico , Espectroscopía de Resonancia Magnética , Lactatos , Etilenodiaminas
4.
Biochem Pharmacol ; 198: 114984, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35245485

RESUMEN

Uremic toxins, such as p-cresyl sulfate (PCS) and indoxyl sulfate (IS), contribute to endothelial dysfunction in chronic kidney disease (CKD). This process is mediated by several cellular pathways, but it is unclear whether cAMP-responsive element-binding protein (CREB) and activating transcription factor 1 (ATF1) participate in endothelial dysfunction in uremic conditions despite playing roles in inflammatory modulation. This study aimed to evaluate the expression, activation, and transcriptional activity of CREB/ATF1 in endothelial cells exposed to PCS, IS, and uremic serum (US). In vitro, ATF1 protein levels were increased by PCS and IS, whereas CREB levels were enhanced only by IS. Activation through CREB-Ser133 and ATF1-Ser63 phosphorylation was induced by PCS, IS, and US. We evaluated the CREB/ATF1 transcriptional activity by analyzing the expression of their target genes, including ICAM1, PTGS2, NOX1, and SLC22A6, which are related to endothelial dysfunction through their roles in vascular inflammation, oxidative stress, and cellular uptake of PCS and IS. The expression of ICAM1, PTGS2 and NOX1 genes was increased by PCS, IS, and US, whereas that of SLC22A6 was induced only by IS. KG-501, a CREB inhibitor, restored the inductive effects of PCS on ICAM1, PTGS2, and NOX1 expression; IS on ICAM1, PTGS2 and SLC22A6 expression; and US on NOX1 expression. The presence of CREB and ATF1 was observed in healthy arteries and in arteries of patients with CKD, which were structurally damaged. These findings suggest that CREB/ATF1 is activated by uremic toxins and may play a relevant role in endothelial dysfunction in CKD.


Asunto(s)
Insuficiencia Renal Crónica , Enfermedades Vasculares , Ciclooxigenasa 2/metabolismo , Células Endoteliales/metabolismo , Femenino , Humanos , Indicán/metabolismo , Indicán/toxicidad , Masculino , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/metabolismo , Tóxinas Urémicas , Enfermedades Vasculares/metabolismo
5.
Toxins (Basel) ; 14(3)2022 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-35324674

RESUMEN

Uremic toxins are a heterogeneous group of molecules that accumulate in the body due to the progression of chronic kidney disease (CKD). These toxins are associated with kidney dysfunction and the development of comorbidities in patients with CKD, being only partially eliminated by dialysis therapies. Importantly, drugs used in clinical treatments may affect the levels of uremic toxins, their tissue disposition, and even their elimination through the interaction of both with proteins such as albumin and cell membrane transporters. In this context, protein-bound uremic toxins (PBUTs) are highlighted for their high affinity for albumin, the most abundant serum protein with multiple binding sites and an ability to interact with drugs. Membrane transporters mediate the cellular influx and efflux of various uremic toxins, which may also compete with drugs as substrates, and both may alter transporter activity or expression. Therefore, this review explores the interaction mechanisms between uremic toxins and albumin, as well as membrane transporters, considering their potential relationship with drugs used in clinical practice.


Asunto(s)
Insuficiencia Renal Crónica , Toxinas Biológicas , Uremia , Albúminas/metabolismo , Interacciones Farmacológicas , Femenino , Humanos , Masculino , Proteínas de Transporte de Membrana , Insuficiencia Renal Crónica/metabolismo , Toxinas Biológicas/metabolismo , Tóxinas Urémicas
6.
Kidney Blood Press Res ; 47(4): 229-238, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35086103

RESUMEN

BACKGROUND AND AIMS: Inflammation and endothelial damage play a pivotal role in Fabry disease (FD) manifestations. In daily clinical practice, FD is mainly monitored by traditional biomarkers of target organ injury, such as serum creatinine and proteinuria, which provide no information about inflammation and endothelial damage. MATERIALS AND METHODS: We investigated the serum levels of 3-nitrotyrosine (3-NT), an oxidative stress biomarker, and of growth differentiation factor-15 (GDF-15) and syndecan-1 in classical FD patients on enzyme replacement therapy (ERT) for at least 6 months and their relationship with Fabry-related cardiac and renal manifestations. RESULTS: Fifty-two classical FD patients (37 females) on ERT for 62.0 ± 27.5 months were included in the study. The main clinical manifestations included nephropathy (67.3%) and cardiomyopathy (21.1%). Serum levels of 3-NT, syndecan-1, and GDF-15 were 33.3 (4.8-111.1) nmol/mL, 55.7 (38.8-74.9) ng/mL, and 541.8 (392.2-784.4) pg/mL, respectively. There was a direct correlation between interventricular septal thickness and serum GDF-15 (r = 0.59; p < 0.001) and syndecan-1 (r = 0.30, p = 0.04). Among kidney parameters, there was a significant correlation between estimated glomerular filtration rate and GDF-15 (r = -0.61; p < 0.001), as well as between 24 h proteinuria and syndecan-1 (r = 0.28; p = 0.04). Serum GDF-15 levels were significantly higher in patients with cardiomyopathy (p = 0.03) as well in those with both nephropathy and cardiomyopathy (p = 0.02) than in patients without these comorbidities. Serum GDF-15 levels were also significantly higher in patients who started ERT at an older age (≥40 years). In multivariate analysis, syndecan-1, 3-NT, GDF-15, time on ERT, and arterial pressure differentiated Fabry patients with both cardiac and renal involvement from those without these manifestations. CONCLUSIONS: GDF-15 and syndecan-1 were associated with parameters of cardiac and renal involvement in classic FD patients on ERT. Their potential association with residual risk and disease outcomes should be investigated.


Asunto(s)
Enfermedad de Fabry , Enfermedades Renales , Biomarcadores , Terapia de Reemplazo Enzimático , Enfermedad de Fabry/complicaciones , Enfermedad de Fabry/tratamiento farmacológico , Femenino , Factor 15 de Diferenciación de Crecimiento , Humanos , Inflamación/tratamiento farmacológico , Enfermedades Renales/complicaciones , Proteinuria/tratamiento farmacológico , Sindecano-1/uso terapéutico , alfa-Galactosidasa/uso terapéutico
7.
J Pharm Biomed Anal ; 208: 114460, 2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-34773837

RESUMEN

Uremic toxins (UTs) accumulate in the circulation of patients with chronic kidney disease (CKD). High volume hemodiafiltration (HDF) improves clearance of low and medium molecular weight UTs compared to HD. The present study is a post-hoc analysis comparing the metabolomic profile in serum from patients under high flux HD (hf-HD) and HDF in HDFIT, a multicentric randomized controlled trial (RCTs). Per protocol, serum samples were collected pre- and post- dialysis treatments at randomization (baseline) and at the end of the follow up (6 months) and stored in a biorepository. Random (pre- and post-dialysis) samples from nine patients in study arm were selected at baseline and at the end of the follow up. To compare the samples, 26 possibly matching metabolites were identified by a t-test among the four groups using 1H nuclear magnetic resonance (NMR). To evaluate the comparison between the modalities is a single treatment session, the clearance rates (CRs) of each metabolite were calculated based on pre-dialysis and post-dialysis samples. In addition, to evaluate to effect of UT removal during the trial follow up period, the pre-dialysis metabolite concentrations at the baseline and at 6 months were compared among the two arms of the study. There was no significant difference between in the single session CRs of metabolites when hf-HD and HDF were compared. On the other hand, the comparison between baseline and 6-month (long-term evolution) led to the identification of 16 metabolites that differentiated the hf-HD and the HDF evolutions. Most of these 16 metabolites are involved in several important metabolic pathways, such as metabolism of phenylalanine and biosynthesis of phenylalanine, tyrosine, and tryptophan, which are related to UTs and cardiovascular disease development. Although no difference was observed between hf-HD and HDF samples before and after a single session, concentrations of CKD-relevant metabolites and associated pathologies were stable in the HDF samples, but not in the hf-HD samples, over the six-month period, suggesting that HDF enhances long-term stability.


Asunto(s)
Hemodiafiltración , Fallo Renal Crónico , Humanos , Espectroscopía de Resonancia Magnética , Metabolómica , Diálisis Renal , Tóxinas Urémicas
8.
Toxins (Basel) ; 13(11)2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34822562

RESUMEN

Cardiorenal syndrome (CRS) is described as primary dysfunction in the heart culminating in renal injury or vice versa. CRS can be classified into five groups, and uremic toxin (UT) accumulation is observed in all types of CRS. Protein-bound uremic toxin (PBUT) accumulation is responsible for permanent damage to the renal tissue, and mainly occurs in CRS types 3 and 4, thus compromising renal function directly leading to a reduction in the glomerular filtration rate (GFR) and/or subsequent proteinuria. With this decrease in GFR, patients may need renal replacement therapy (RRT), such as peritoneal dialysis (PD). PD is a high-quality and home-based dialysis therapy for patients with end-stage renal disease (ESRD) and is based on the semi-permeable characteristics of the peritoneum. These patients are exposed to factors which may cause several modifications on the peritoneal membrane. The presence of UT may harm the peritoneum membrane, which in turn can lead to the formation of extracellular vesicles (EVs). EVs are released by almost all cell types and contain lipids, nucleic acids, metabolites, membrane proteins, and cytosolic components from their cell origin. Our research group previously demonstrated that the EVs can be related to endothelial dysfunction and are formed when UTs are in contact with the endothelial monolayer. In this scenario, this review explores the mechanisms of EV formation in CRS, uremia, the peritoneum, and as potential biomarkers in peritoneal dialysis.


Asunto(s)
Vesículas Extracelulares/metabolismo , Riñón/metabolismo , Miocardio/metabolismo , Diálisis Peritoneal , Uremia/metabolismo , Tóxinas Urémicas/metabolismo , Animales , Síndrome Cardiorrenal , Corazón/fisiopatología , Humanos , Riñón/fisiopatología , Fallo Renal Crónico , Ratones , Ratas
9.
J Ethnopharmacol ; 281: 114512, 2021 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-34384848

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Cancer is an inflammatory disease because carcinogenesis and tumor progression depend on intrinsic and extrinsic inflammatory pathways. Although species of the genus Aspidosperma are widely used to treat tumors, and there is ethnopharmacological evidence for traditional use of the species A. subincanum as an anti-inflammatory agent, its antineoplastic potential is unknown. AIM OF THE STUDY: To evaluate toxic effects of the indole alkaloid-rich fraction (IAF) of A. subincanum on the MCF7 cell line and identify some of the anti-inflammatory mechanisms involved. MATERIALS AND METHODS: Chromatographic analyses were performed by ultra-high-performance liquid chromatography with electrospray ionization mass spectrometry, and cytotoxic and antiproliferative effects of IAF were verified by MTT and clonogenic assays. Cell cycle alterations were analyzed by measuring DNA content, while propidium iodide and acridine orange staining was performed to determine the type of induced cell death. The expression of apoptosis markers and proteins involved in cell proliferation and survival pathways was analyzed by immunoblotting, RT-qPCR, and ELISAs. Interference with redox status was investigated using a DCFH-DA probe and by measuring catalase activity. RESULTS: Chromatographic analyses showed that IAF is a complex mixture containing indole alkaloids. IAF selectively exerted toxic and antiproliferative effects, elevating the Bax/Bcl-xL ratio and inducing apoptosis in MCF7 cells. IAF decreased intracellular reactive oxygen species levels and increased catalase activity, while reducing the IL-8 level and suppressing COX-2 expression. CONCLUSIONS: IAF induces apoptosis in MCF7 cells by suppressing COX-2 expression while reducing IL-8 levels and intracellular content of reactive oxygen species.


Asunto(s)
Antiinflamatorios/farmacología , Antineoplásicos Fitogénicos/farmacología , Aspidosperma , Alcaloides Indólicos/farmacología , Extractos Vegetales/farmacología , Línea Celular Tumoral , Fenómenos Fisiológicos Celulares/efectos de los fármacos , Ciclooxigenasa 2/genética , Humanos , Interleucina-8/metabolismo , Estrés Oxidativo/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
10.
Cells ; 10(8)2021 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-34440708

RESUMEN

Over the development of eukaryotic cells, intrinsic mechanisms have been developed in order to provide the ability to defend against aggressive agents. In this sense, a group of proteins plays a crucial role in controlling the production of several proteins, guaranteeing cell survival. The heat shock proteins (HSPs), are a family of proteins that have been linked to different cellular functions, being activated under conditions of cellular stress, not only imposed by thermal variation but also toxins, radiation, infectious agents, hypoxia, etc. Regarding pathological situations as seen in cardiorenal syndrome (CRS), HSPs have been shown to be important mediators involved in the control of gene transcription and intracellular signaling, in addition to be an important connector with the immune system. CRS is classified as acute or chronic and according to the first organ to suffer the injury, which can be the heart (CRS type 1 and type 2), kidneys (CRS type 3 and 4) or both (CRS type 5). In all types of CRS, the immune system, redox balance, mitochondrial dysfunction, and tissue remodeling have been the subject of numerous studies in the literature in order to elucidate mechanisms and propose new therapeutic strategies. In this sense, HSPs have been targeted by researchers as important connectors between kidney and heart. Thus, the present review has a focus to present the state of the art regarding the role of HSPs in the pathophysiology of cardiac and renal alterations, as well their role in the kidney-heart axis.


Asunto(s)
Síndrome Cardiorrenal/metabolismo , Proteínas de Choque Térmico/metabolismo , Riñón/metabolismo , Miocardio/metabolismo , Animales , Síndrome Cardiorrenal/genética , Síndrome Cardiorrenal/fisiopatología , Regulación de la Expresión Génica , Corazón/fisiopatología , Proteínas de Choque Térmico/genética , Humanos , Riñón/fisiopatología , Transducción de Señal
11.
Front Physiol ; 12: 686249, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34054588

RESUMEN

The kidneys and heart share functions with the common goal of maintaining homeostasis. When kidney injury occurs, many compounds, the so-called "uremic retention solutes" or "uremic toxins," accumulate in the circulation targeting other tissues. The accumulation of uremic toxins such as p-cresyl sulfate, indoxyl sulfate and inorganic phosphate leads to a loss of a substantial number of body functions. Although the concept of uremic toxins is dated to the 1960s, the molecular mechanisms capable of leading to renal and cardiovascular injuries are not yet known. Besides, the greatest toxic effects appear to be induced by compounds that are difficult to remove by dialysis. Considering the close relationship between renal and cardiovascular functions, an understanding of the mechanisms involved in the production, clearance and overall impact of uremic toxins is extremely relevant for the understanding of pathologies of the cardiovascular system. Thus, the present study has as main focus to present an extensive review on the impact of uremic toxins in the cardiovascular system, bringing the state of the art on the subject as well as clinical implications related to patient's therapy affected by chronic kidney disease, which represents high mortality of patients with cardiac comorbidities.

12.
Toxicol Lett ; 347: 12-22, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-33945863

RESUMEN

p-Cresyl sulfate (PCS), indoxyl sulfate (IS), and inorganic phosphate (Pi) are uremic toxins found in chronic kidney disease (CKD) that are closely related to endothelial extracellular vesicles (EVs) formation. The present study aimed to understand the role of EVs and their role in cell adhesion and migration, inflammation, and oxidative stress. Human endothelial cells were treated with PCS, IS, and Pi in pre-established uremic and kinetic recommendations. EVs were characterized using scanning electron microscopy, flow cytometry, and NanoSight assays. The concentrations of EVs were established using Alamar Blue and MTT assays. Cell adhesion to extracellular matrix proteins was analyzed using an adhesion assay. Inflammation and oxidative stress were assessed by vascular cell adhesion molecule-1 expression/monocyte migration and reactive oxygen species production, respectively. The capacity of EVs to stimulate endothelial cell migration was evaluated using a wound-healing assay. Our data showed that endothelial cells stimulated with uremic toxins can induce the formation of EVs of different sizes, quantities, and concentrations, depending on the uremic toxin used. Cell adhesion was significantly (P < 0.01) stimulated in cells exposed to PCS-induced extracellular vesicles (PCSEVs) and inorganic phosphate-induced extracellular vesicles (PiEVs). Cell migration was significantly (P < 0.05) stimulated by PCSEVs. VCAM-1 expression was evident in cells treated with PCSEVs and IS-induced extracellular vesicles (ISEVs). EVs are not able to stimulate monocyte migration or oxidative stress. In conclusion, EVs may be a biomarker of endothelial injury and the inflammatory process, playing an important role in cell-to-cell communication and pathophysiological processes, although more studies are needed to better understand the mechanisms of EVs in uremia.


Asunto(s)
Adhesión Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Cresoles/toxicidad , Células Endoteliales/efectos de los fármacos , Vesículas Extracelulares/efectos de los fármacos , Indicán/toxicidad , Mediadores de Inflamación/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fosfatos/toxicidad , Ésteres del Ácido Sulfúrico/toxicidad , Uremia/patología , Línea Celular , Células Endoteliales/metabolismo , Células Endoteliales/ultraestructura , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/ultraestructura , Humanos , Transducción de Señal , Uremia/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo
13.
Clinics (Sao Paulo) ; 76: e1821, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33624705

RESUMEN

OBJECTIVES: This study aimed to evaluate the potential anti-inflammatory effects of vitamin D supplementation under uremic conditions, both in vivo and in vitro, and its effects on the parameters of mineral metabolism. METHODS: Thirty-two hemodialysis patients were randomly assigned to receive placebo (N=14) or cholecalciferol (N=18) for six months. Serum levels of calcium, phosphate, total alkaline phosphatase, intact parathyroid hormone (iPTH), and vitamin D were measured at baseline and after three and six months. The levels of fibroblast growth factor-23 (FGF-23), interleukin-1ß (IL-1ß), and high-sensitivity C-reactive protein (hs-CRP) were also measured at baseline and at six months. Human monocytes were used for in vitro experiments and treated with cholecalciferol (150 nM) and uremic serum. Cell viability, reactive oxygen species (ROS) production, and cathelicidin (CAMP) expression were evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, dichloro-dihydro-fluorescein diacetate assay, and real time-quantitative polymerase chain reaction, respectively. RESULTS: Both patient groups were clinically and biochemically similar at baseline. After six months, the levels of vitamin D and iPTH were higher and lower, respectively, in the cholecalciferol group than in the placebo group (p<0.05). There was no significant difference between the parameters of mineral metabolism, such as IL-1ß and hs-CRP levels, in both groups. Treatment with uremic serum lowered the monocyte viability (p<0.0001) and increased ROS production (p<0.01) and CAMP expression (p<0.05); these effects were counterbalanced by cholecalciferol treatment (p<0.05). CONCLUSIONS: Thus, cholecalciferol supplementation is an efficient strategy to ameliorate hypovitaminosis D in hemodialysis patients, but its beneficial effects on the control of secondary hyperparathyroidism are relatively unclear. Even though cholecalciferol exhibited anti-inflammatory effects in vitro, its short-term supplementation was not effective in improving the inflammatory profile of patients on hemodialysis, as indicated by the IL-1ß and hs-CRP levels.


Asunto(s)
Colecalciferol , Deficiencia de Vitamina D , Antiinflamatorios/uso terapéutico , Colecalciferol/uso terapéutico , Suplementos Dietéticos , Factor-23 de Crecimiento de Fibroblastos , Humanos , Hormona Paratiroidea/uso terapéutico , Diálisis Renal , Vitamina D
14.
Toxicol Appl Pharmacol ; 414: 115412, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33484708

RESUMEN

COVID-19 is a pandemic with no end in sight. There is only one approved antiviral agent but global stocks are deemed insufficient. Despite in vitro antiviral activity, clinical trials of chloroquine and hydroxychloroquine were disappointing, and they may even impair outcomes. Chloroquine causes zebroid deposits reminiscent of Fabry disease (α-galactosidase A deficiency) and endothelial cells are key targets of COVID-19. We have explored the effect of chloroquine on cultured endothelial cells and its modulation by recombinant α-galactosidase A (agalsidase). Following dose-response studies, 0.5 µg/mL chloroquine was added to cultured human endothelial cells. Neutral red and Lysotracker were used to assess lysosomes. Cytotoxicity was evaluated by the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) - MTT assay and cell stress by assessing reactive oxygen species (ROS) and nitric oxide (NO). In endothelial cells, chloroquine induced dose-dependent cytotoxicity at in vitro test concentrations for COVID-19 therapy. At a sublethal concentration, chloroquine significantly induced the accumulation of acid organelles (P < 0.05), increased ROS levels, and decreased NO production (P < 0.05). These adverse effects of chloroquine on endothelial cell biology were decreased by agalsidase-ß (P < 0.05). Chloroquine-induced endothelial cell cytotoxicity and stress is attenuated by agalsidase-ß treatment. This suggests that endothelial cell injury may contribute to the failure of chloroquine as therapy for COVID-19 and may be at least in part related to causing dysfunction of the lysosomal enzyme α-galactosidase A.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Cloroquina/efectos adversos , Células Endoteliales/efectos de los fármacos , Endotelio Vascular/efectos de los fármacos , Lisosomas/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Cloroquina/administración & dosificación , Cloroquina/uso terapéutico , Células Endoteliales/metabolismo , Células Endoteliales/patología , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Enfermedad de Fabry/inducido químicamente , Humanos , Pandemias , Especies Reactivas de Oxígeno , SARS-CoV-2
15.
Acta Pharm ; 71(3): 383-398, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36654097

RESUMEN

Pain is a common and distressing symptom of many diseases and its clinical treatment generally involves analgesics and anti-inflammatory drugs. This study evaluated the toxicity of Ilex paraguariensis A. St.-Hil. (Aquifoliaceae) aqueous extract (leaves, petioles and branches) and its performance in a nociceptive response. Hepatotoxicity, psycho-stimulant test and evaluation of enzyme markers for liver damage were also tested. Chromatographic analysis by UPLC-MS demonstrated a series of isomeric monocaffeoylquinic acids, isomers of dicaffeoylquinic acid, flavonol glycosides, and saponins. Phase I and II of nociception were obtained for meloxicam, dexamethasone and aqueous Ilex paraguariensis extract. Ilex paraguariensis extract concentration was negatively correlated (R = -0.887) with alanine aminotransferase (p < 0.05) in acetaminophen-induced hepatotoxicity test, indicating hepatoprotective activity of this extract. Ilex paraguariensis extract also presented analgesic properties equivalent to drugs that already have proven efficacy. Notably, the administration of multiple doses of Ilex paraguariensis extract was considered safe from the therapeutic point of view.

16.
Clinics ; 76: e1821, 2021. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1153986

RESUMEN

OBJECTIVES: This study aimed to evaluate the potential anti-inflammatory effects of vitamin D supplementation under uremic conditions, both in vivo and in vitro, and its effects on the parameters of mineral metabolism. METHODS: Thirty-two hemodialysis patients were randomly assigned to receive placebo (N=14) or cholecalciferol (N=18) for six months. Serum levels of calcium, phosphate, total alkaline phosphatase, intact parathyroid hormone (iPTH), and vitamin D were measured at baseline and after three and six months. The levels of fibroblast growth factor-23 (FGF-23), interleukin-1β (IL-1β), and high-sensitivity C-reactive protein (hs-CRP) were also measured at baseline and at six months. Human monocytes were used for in vitro experiments and treated with cholecalciferol (150 nM) and uremic serum. Cell viability, reactive oxygen species (ROS) production, and cathelicidin (CAMP) expression were evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, dichloro-dihydro-fluorescein diacetate assay, and real time-quantitative polymerase chain reaction, respectively. RESULTS: Both patient groups were clinically and biochemically similar at baseline. After six months, the levels of vitamin D and iPTH were higher and lower, respectively, in the cholecalciferol group than in the placebo group (p<0.05). There was no significant difference between the parameters of mineral metabolism, such as IL-1β and hs-CRP levels, in both groups. Treatment with uremic serum lowered the monocyte viability (p<0.0001) and increased ROS production (p<0.01) and CAMP expression (p<0.05); these effects were counterbalanced by cholecalciferol treatment (p<0.05). CONCLUSIONS: Thus, cholecalciferol supplementation is an efficient strategy to ameliorate hypovitaminosis D in hemodialysis patients, but its beneficial effects on the control of secondary hyperparathyroidism are relatively unclear. Even though cholecalciferol exhibited anti-inflammatory effects in vitro, its short-term supplementation was not effective in improving the inflammatory profile of patients on hemodialysis, as indicated by the IL-1β and hs-CRP levels.


Asunto(s)
Humanos , Deficiencia de Vitamina D , Colecalciferol/uso terapéutico , Hormona Paratiroidea/uso terapéutico , Vitamina D , Diálisis Renal , Suplementos Dietéticos , Antiinflamatorios
18.
Toxins (Basel) ; 12(6)2020 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-32575762

RESUMEN

Uremic toxins can induce endothelial dysfunction in patients with chronic kidney disease (CKD). Indeed, the structure of the endothelial monolayer is damaged in CKD, and studies have shown that the uremic toxins contribute to the loss of cell-cell junctions, increasing permeability. Membrane proteins, such as transporters and receptors, can mediate the interaction between uremic toxins and endothelial cells. In these cells, uremic toxins induce oxidative stress and activation of signaling pathways, including the aryl hydrocarbon receptor (AhR), nuclear factor kappa B (NF-κB), and mitogen-activated protein kinase (MAPK) pathways. The activation of these pathways leads to overexpression of proinflammatory (e.g., monocyte chemoattractant protein-1, E-selectin) and prothrombotic (e.g., tissue factor) proteins. Uremic toxins also induce the formation of endothelial microparticles (EMPs), which can lead to the activation and dysfunction of other cells, and modulate the expression of microRNAs that have an important role in the regulation of cellular processes. The resulting endothelial dysfunction contributes to the pathogenesis of cardiovascular diseases, such as atherosclerosis and thrombotic events. Therefore, uremic toxins as well as the pathways they modulated may be potential targets for therapies in order to improve treatment for patients with CKD.


Asunto(s)
Enfermedades Cardiovasculares/metabolismo , Endotelio Vascular/metabolismo , Insuficiencia Renal Crónica/metabolismo , Toxinas Biológicas/metabolismo , Uremia/metabolismo , Animales , Enfermedades Cardiovasculares/patología , Enfermedades Cardiovasculares/fisiopatología , Endotelio Vascular/patología , Endotelio Vascular/fisiopatología , Humanos , Insuficiencia Renal Crónica/patología , Insuficiencia Renal Crónica/fisiopatología , Transducción de Señal , Uremia/patología , Uremia/fisiopatología
19.
Arch Med Res ; 51(1): 21-29, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-32086105

RESUMEN

OBJETIVE: Uremic sarcopenia is a complication of chronic kidney disease, particularly in its later stages, which leads to musculoskeletal disability. Uremic toxins have been linked to the pathogenesis of several manifestations of uremic syndrome. We sought to investigate whether indoxyl sulphate (IS), a protein-bound uremic toxin, is implicated in the development of uremic sarcopenia. MATERIAL AND METHODS: Myoblasts were exposed to IS at normal (0.6 mg/L, IS0.6), uremic (53 mg/L, IS53) or maximum uremic (236 mg/L, IS236) concentrations for 24, 48 and 72 h. Cell viability was evaluated by MTT assay and by 7-aminoactinomycin D staining. ROS generation and apoptosis were evaluated by flow cytometry. MyoD and myogenin mRNA expression was evaluated by qRT-PCR and myosin heavy chain expression by immunocytochemistry. RESULTS: Myoblast viability was reduced by IS236 in a time-dependent pattern (p <0.05; 84.4, 68.0, and 63.6%). ROS production was significantly higher (p <0.05) in cells exposed to IS53 and IS236 compared to control (untreated cells). The apoptosis rate was significantly higher in cells treated with IS53 and IS236 than in control after 48h (p <0.05; 4.7 ± 0.1% and 4.6 ± 0.3% vs. 3.1 ± 0.1%, respectively) and 72h (p <0.05; 9.6 ± 1.1% and 10.4 ± 0.3% vs. 3.1 ± 0.7%, respectively). No effect was observed on MyoD, myogenin, myosin heavy chain expression, and markers of myoblast differentiation at any IS concentration tested or time-point experiment. CONCLUSIONS: These data indicate that IS has direct toxic effects on myoblast by decreasing its viability and increasing cell apoptosis. IS may be a potential target for treating uremic sarcopenia.


Asunto(s)
Apoptosis/efectos de los fármacos , Indicán/farmacología , Mioblastos/efectos de los fármacos , Sarcopenia/inducido químicamente , Uremia/inducido químicamente , Animales , Muerte Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Ratones , Células Musculares/efectos de los fármacos , Células Musculares/fisiología , Mioblastos/fisiología , Especies Reactivas de Oxígeno/metabolismo , Sarcopenia/complicaciones , Toxinas Biológicas/metabolismo , Toxinas Biológicas/farmacología , Regulación hacia Arriba/efectos de los fármacos , Uremia/complicaciones
20.
Clin Chim Acta ; 502: 66-72, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31836502

RESUMEN

Vitamin K is a key cofactor for the activation of proteins involved in blood coagulation, apoptosis, bone mineralization regulation, and vessel health. Scientific evidence shows an important role of activated osteocalcin and matrix-Gla protein in bone and vessels, markedly affected along the course of chronic kidney disease (CKD). In fact, CKD corresponds to an unique condition of vitamin K deficiency caused by dietary restriction, intestinal dysfunction, and impaired vitamin K recycling. Clinical data suggest that vitamin K status can be modulated and this prompts us to speculate whether patients with CKD might benefit from vitamin K supplementation. However, as important as whether the improvement in vitamin K status would be able to result in better bone quality, less vascular calcification, and lower mortality rates, several issues need to be clarified. These include better standardized methods for measuring vitamin K levels, and definition of the optimal concentration range for supplementation in different subgroups. Here, we review the literature data concerning the impact of vitamin K deficiency and supplementation on CKD-associated mineral and bone disorders (CKD-MBD). We present and discuss the available evidence from basic science and clinical studies, and highlight perspectives for further research.


Asunto(s)
Trastorno Mineral y Óseo Asociado a la Enfermedad Renal Crónica/metabolismo , Deficiencia de Vitamina K/metabolismo , Vitamina K/metabolismo , Trastorno Mineral y Óseo Asociado a la Enfermedad Renal Crónica/tratamiento farmacológico , Humanos , Estructura Molecular , Vitamina K/administración & dosificación , Vitamina K/uso terapéutico , Deficiencia de Vitamina K/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...