Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(11)2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37298251

RESUMEN

A new sustainable heterogeneous catalyst for copper-catalyzed azide-alkyne cycloaddition reaction (CuAAC) was investigated. The preparation of the sustainable catalyst was carried out through the complexation reaction between the polysaccharide cellulose acetate backbone (CA) and copper(II) ions. The resulting complex [Cu(II)-CA] was fully characterized by using different spectroscopic methods such as Fourier-transform infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray (EDX), Ultraviolet-visible (UV-vis), and Inductively Coupled Plasma (ICP) analyses. The Cu(II)-CA complex exhibits high activity in the CuAAC reaction for substituted alkynes and organic azides, leading to a selective synthesis of the corresponding 1,4-isomer 1,2,3-triazoles in water as a solvent and working at room temperature. It is worth noting that this catalyst has several advantages from the sustainable chemistry point of view including no use of additives, biopolymer support, reactions carried out in water at room temperature, and easy recovery of the catalyst. These characteristics make it a potential candidate not only for the CuAAC reaction but also for other catalytic organic reactions.


Asunto(s)
Cobre , Agua , Cobre/química , Agua/química , Reacción de Cicloadición , Azidas/química , Alquinos/química , Catálisis
2.
Int J Mol Sci ; 23(4)2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35216495

RESUMEN

The copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction is considered to be the most representative ligation process within the context of the "click chemistry" concept. This CuAAC reaction, which yields compounds containing a 1,2,3-triazole core, has become relevant in the construction of biologically complex systems, bioconjugation strategies, and supramolecular and material sciences. Although many CuAAC reactions are performed under homogenous conditions, heterogenous copper-based catalytic systems are gaining exponential interest, relying on the easy removal, recovery, and reusability of catalytically copper species. The present review covers the most recently developed copper-containing heterogenous solid catalytic systems that use solid inorganic/organic hybrid supports, and which have been used in promoting CuAAC reactions. Due to the demand for 1,2,3-triazoles as non-classical bioisosteres and as framework-based drugs, the CuAAC reaction promoted by solid heterogenous catalysts has greatly improved the recovery and removal of copper species, usually by simple filtration. In so doing, the solving of the toxicity issue regarding copper particles in compounds of biological interest has been achieved. This protocol is also expected to produce a practical chemical process for accessing such compounds on an industrial scale.


Asunto(s)
Alquinos/química , Azidas/química , Cobre/química , Reacción de Cicloadición/métodos , Catálisis , Química Clic/métodos , Triazoles/química
3.
J Biomol Struct Dyn ; 40(1): 143-153, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32799761

RESUMEN

The new coronavirus SARS-CoV-2 virus is causing a severe pneumonia in human, provoking the serious outbreak epidemic CoV-2. Since its appearance in Wuhan, China on December 2019, CoV-2 becomes the biggest challenge the world is facing today, including the discovery of antiviral drug for SARS-CoV-2. In this study, the potential inhibitory of a class of human SARS inhibitors, namely pyridine N-oxide derivatives, against CoV-2 was addressed by quantitative structure-activity relationship 3 D-QSAR. The reliable CoMSIA developed model of 110 pyridine N-oxide based-antiviral compounds, showed Q2= 0.54 and rext2=0.71. The molecular surflex-docking was applied to identify the crystal structure of CoV-2 main protease 3CLpro (PDB: 6LU7) and two potentially and largely used antiviral molecules, namely chloroquine, hydroxychloroquine. The obtained free energy affinity and ADMET properties indicate that among the series of model antiviral compounds examined, the new antiviral compound A5 could be an excellent antiviral drug inhibitor against COVID-19. The inhibition activity of pyridine N-oxyde compounds against CoV-2 was compared with the activity of two common antiviral drug, namely chloroquine (CQ) and hydroxychloroquine (HCQ). DFT method was also used to define the sites of reactivity of pyridine N-oxyde derivatives as well as CQ and HCQ.Communicated by Ramaswamy H. Sarma.


Asunto(s)
COVID-19 , Relación Estructura-Actividad Cuantitativa , Antivirales/farmacología , Humanos , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas , Piridinas/farmacología , SARS-CoV-2
4.
Int J Mol Sci ; 23(1)2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-35008481

RESUMEN

This review accounts for the most recent and significant research results from the literature on the design and synthesis of 1,2,3-triazole compounds and their usefulness as molecular well-defined corrosion inhibitors for steels, copper, iron, aluminum, and their alloys in several aggressive media. Of particular interest are the 1,4-disubstituted 1,2,3-triazole derivatives prepared in a regioselective manner under copper-catalyzed azide-alkyne cycloaddition (CuAAC) click reactions. They are easily and straightforwardly prepared compounds, non-toxic, environmentally friendly, and stable products to the hydrolysis under acidic conditions. Moreover, they have shown a good efficiency as corrosion inhibitors for metals and their alloys in different acidic media. The inhibition efficiencies (IEs) are evaluated from electrochemical impedance spectroscopy (EIS) parameters with different concentrations and environmental conditions. Mechanistic aspects of the 1,2,3-triazoles mediated corrosion inhibition in metals and metal alloy materials are also overviewed.


Asunto(s)
Azidas/farmacología , Metales/química , Triazoles/farmacología , Azidas/química , Catálisis , Química Clic , Corrosión , Reacción de Cicloadición , Estructura Molecular , Propiedades de Superficie/efectos de los fármacos , Triazoles/química
5.
RSC Adv ; 10(54): 32821-32832, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35516499

RESUMEN

A novel sustainable hydrogel catalyst based on the reaction of sodium alginate naturally extracted from brown algae Laminaria digitata residue with copper(ii) was prepared as spherical beads, namely Cu(ii)-alginate hydrogel (Cu(ii)-AHG). The morphology and structural characteristics of these beads were elucidated by different techniques such as SEM, EDX, BET, FTIR and TGA analysis. Cu(ii)-AHG and its dried form, namely Cu(ii)-alginate (Cu(ii)-AD), are relatively uniform with an average pore ranging from 200 nm to more than 20 µm. These superporous structure beads were employed for the copper catalyzed [3 + 2] cycloaddition reaction of aryl azides and terminal aryl alkynes (CuAAC) via click chemistry at low catalyst loading, using water as a solvent at room temperature and pressure. The catalytic active copper(i) species was generated by the reduction of copper(ii) by terminal alkyne via the oxidative alkyne homocoupling reaction. The prepared catalysts were found to be efficient (85-92%) and regioselective by affording only 1,4-disubstituted-1,2,3-triazoles. They were also recoverable and reused in their dried form for at least four consecutive times without a clear loss of efficiency. A mechanistic study was performed through density functional theory (DFT) calculations in order to explain the regioselectivity outcome of Cu(ii)-alginate in CuAAC reactions. The analysis of the local electrophilicity (ω k) at the electrophilic reagent and the local nucleophilicity (N k) at the nucleophilic confirms the polar character of CuAAC. This catalyst has the main advantage of being sustainably ligand-free and recyclable.

6.
Front Chem ; 7: 81, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30838201

RESUMEN

1,4-Disubstituted-1,2,3-triazoles, considered as an important and useful class of heterocycles with potential applications in material science and biology, have been prepared in an efficient and selective manner by copper on carbon-catalyzed [3+2] cycloaddition reactions of azides and alkynes (CuAAC) in water under strict click chemistry conditions. Copper(I) catalysts heterogenized onto commercially activated carbon materials (Cu-CC) and on another carbon material produced from vegetable biomass using Argan nut shells (Cu-CANS) were found to be versatile catalytic sources for sustainable CuAAC. These copper on carbon supports were prepared and fully characterized by using two types of activated carbons that exhibit different porosity and specific surface. The delineation of the nature of the catalytic copper species and the role of the carbon support in the CuAAC were addressed. These heterogeneous copper on carbon catalysts were recovered and reused until ten catalytic runs without any noticeable loss of activity.

7.
Int J Biol Macromol ; 119: 849-856, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30081123

RESUMEN

Naturally-occurring cellulose has been employed as a bio-support macromolecule for the immobilization of either copper(I) or copper(II) ions in order to click azide and alkyne derivatives in water. Under such a click regime, 1,4-disubstitued-1,2,3-triazoles were obtained regioselectively in excellent yields at room temperature. The reaction work-up is simple and the bio-heterogeneous catalyst that has been fully characterized by AAS, SEM, EDX and FT-IR can be easily separated and reused at least five times without any significant decrease in its activity and selectivity, particularly in the case of the very stable CuI-Cellulose.


Asunto(s)
Alquinos/química , Azidas/química , Celulosa/química , Química Clic , Cobre/química , Reacción de Cicloadición , Catálisis , Celulosa/síntesis química , Celulosa/ultraestructura , Solventes/química , Espectroscopía Infrarroja por Transformada de Fourier , Agua/química
8.
RSC Adv ; 8(14): 7670-7678, 2018 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35539150

RESUMEN

The copper(i) catalyzed azide-alkyne [3 + 2] cycloaddition (32CA) reaction and its uncatalyzed version have been studied for systematic understanding of this relevant organic transformation, using DFT calculations at the B3LYP/6-31G(d) (LANL2DZ for Cu) computational levels. In the absence of a copper(i) catalyst, two regioisomeric reaction paths were studied, indicating that the 32CA reaction takes place through an asynchronous one-step mechanism with a very low polar character. The two reactive channels leading to 1,4- and 1,5-regisomer present similar high activation energies of 18.84 and 18.51 kcal mol-1, respectively. The coordination of copper(i) to alkyne produces relevant changes in this 32CA reaction. Analysis of the global and local electrophilicity/nucleophilicity allows explaining correctly the behaviors of the copper(i) catalyzed cycloaddition. Coordination of the copper to alkyne changes the mechanism from a non-polar one-step mechanism to a polar stepwise one, as a consequence of the high nucleophilic character of the dinuclear Cu(i)-acetylide complex. Parr and Fukui functions and Dual Descriptor correctly explain the observed regioselectivity by means of the most favorable two-center interaction that takes place along the 1,4 reaction path.

9.
Molecules ; 21(11)2016 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-27801811

RESUMEN

The relationship between the electrophilicity ω index and the Hammett constant σp has been studied for the [2+3] cycloaddition reactions of a series of para-substituted phenyl azides towards para-substituted phenyl alkynes. The electrophilicity ω index-a reactivity density functional theory (DFT) descriptor evaluated at the ground state of the molecules-shows a good linear relationship with the Hammett substituent constants σp. The theoretical scale of reactivity correctly explains the electrophilic activation/deactivation effects promoted by electron-withdrawing and electron-releasing substituents in both azide and alkyne components.


Asunto(s)
Alquinos/química , Azidas/química , Modelos Químicos
10.
Inorg Chem ; 54(10): 4594-6, 2015 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-25950857

RESUMEN

A new heteroleptic 1D Cu(I)-Re(IV) coordination polymer of the formula {Cu(I)Re(IV)Cl4(µ-Cl)(µ-pyz)[Re(IV)Cl4(µ-bpym)]}n·nMeNO2 (1; pyz = pyrazine, bpym = 2,2'-bipyrimidine) has been prepared through the Cu(I)-mediated self-assembly of two different Re(IV) metalloligands, namely, [ReCl5(pyz)](-) and [ReCl4(bpym)]. 1 consists of chiral branched chains with an overall rack-type architecture displaying photoemission and magnetic ordering. These results constitute a first step toward making new multifunctional magnetic materials based on mixed 3d-5d molecular systems.

11.
Acc Chem Res ; 48(3): 510-20, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25697758

RESUMEN

Metallosupramolecular complexes constitute an important advance in the emerging fields of molecular spintronics and quantum computation and a useful platform in the development of active components of spintronic circuits and quantum computers for applications in information processing and storage. The external control of chemical reactivity (electro- and photochemical) and physical properties (electronic and magnetic) in metallosupramolecular complexes is a current challenge in supramolecular coordination chemistry, which lies at the interface of several other supramolecular disciplines, including electro-, photo-, and magnetochemistry. The specific control of current flow or spin delocalization through a molecular assembly in response to one or many input signals leads to the concept of developing a molecule-based spintronics that can be viewed as a potential alternative to the classical molecule-based electronics. A great variety of factors can influence over these electronically or magnetically coupled, metallosupramolecular complexes in a reversible manner, electronic or photonic external stimuli being the most promising ones. The response ability of the metal centers and/or the organic bridging ligands to the application of an electric field or light irradiation, together with the geometrical features that allow the precise positioning in space of substituent groups, make these metal-organic systems particularly suitable to build highly integrated molecular spintronic circuits. In this Account, we describe the chemistry and physics of dinuclear copper(II) metallacyclophanes with oxamato-containing dinucleating ligands featuring redox- and photoactive aromatic spacers. Our recent works on dicopper(II) metallacyclophanes and earlier ones on related organic cyclophanes are now compared in a critical manner. Special focus is placed on the ligand design as well as in the combination of experimental and computational methods to demonstrate the multifunctionality nature of these metallosupramolecular complexes. This new class of oxamato-based dicopper(II) metallacyclophanes affords an excellent synthetic and theoretical set of models for both chemical and physical fundamental studies on redox- and photo-triggered, long-distance electron exchange phenomena, which are two major topics in molecular magnetism and molecular electronics. Apart from their use as ground tests for the fundamental research on the relative importance of the spin delocalization and spin polarization mechanisms of the electron exchange interaction through extended π-conjugated aromatic ligands in polymetallic complexes, oxamato-based dicopper(II) metallacyclophanes possessing spin-containing electro- and chromophores at the metal and/or the ligand counterparts emerge as potentially active (magnetic and electronic) molecular components to build a metal-based spintronic circuit. They are thus unique examples of multifunctional magnetic complexes to get single-molecule spintronic devices by controlling and allowing the spin communication, when serving as molecular magnetic couplers and wires, or by exhibiting bistable spin behavior, when acting as molecular magnetic rectifiers and switches. Oxamato-based dicopper(II) metallacyclophanes also emerge as potential candidates for the study of coherent electron transport through single molecules, both experimentally and theoretically. The results presented herein, which are a first step in the metallosupramolecular approach to molecular spintronics, intend to attract the attention of physicists and materials scientists with a large expertice in the manipulation and measurement of single-molecule electron transport properties, as well as in the processing and addressing of molecules on different supports.

12.
Dalton Trans ; 43(25): 9704-13, 2014 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-24834988

RESUMEN

Clickable ligands like N,N'-bis((pyridin-2-yl)methyl)prop-2-yn-1-amine (L(1)) and N-((1-methyl-1H-imidazol-2-yl)methyl)-N-(pyridin-2-ylmethyl)prop-2-yn-1-amine (L(2)) have been used to synthesise a series of manganese(ii) complexes for grafting onto appropriate solid supports. These ligands mimic the 2-His-1-carboxylate facial chelation present in the active site of the manganese-dependent dioxygenase (MndD), while the alkyne side function allows grafting of the ligand onto an azido-functionalised support using "click chemistry" methodologies. Such synthetic analogues of the MndD crystallise in the solid state as double halide or pseudohalide-bridged dinuclear manganese(ii) complexes of the general formula [Mn2(µ-X)2X2L2] [L = L(1) with X = Cl (), Br (), and N3 (); L = L(2) with X = N3 ()]. Complexes are characterised by a weak magnetic exchange interaction between the two high-spin Mn(II) ions through the two X(-) bridges (J in the range of -0.059 to +5.30 cm(-1), H = -J·SMn1·SMn2 with SMn1 = SMn2 = 5/2). A new magneto-structural correlation of superexchange bis(µ1,1-azido)dimanganese(ii) complexes has been proposed using both structural parameters, the Mn-N-Mn bridging angle and the Mn-Nazido distance. In MeOH-EtOH solution the dimeric species are present together with few percents of mononuclear manganese(ii) complexes as evidenced by electron paramagnetic resonance (EPR) spectroscopy. Grafting the complexes onto mesoporous silica of MCM-41 type stabilises both dimers and monomers in the nanopores of the solid.


Asunto(s)
Química Clic , Complejos de Coordinación/química , Dioxigenasas/química , Manganeso/química , Dióxido de Silicio/química , Dominio Catalítico , Cristalografía por Rayos X , Espectroscopía de Resonancia por Spin del Electrón , Ligandos , Modelos Moleculares , Conformación Molecular , Técnicas de Síntesis en Fase Sólida
13.
Inorg Chem ; 52(13): 7645-57, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23777357

RESUMEN

Two novel double-stranded dicopper(II) metallacyclophanes of formula (nBu4N)4[Cu2(dpeba)2]·4MeOH·2Et2O (1) and (nBu4N)4[Cu2(tpeba)2]·12H2O (2) have been prepared by the Cu(II)-mediated self-assembly of the rigid ('rod-like') bridging ligands N,N'-4,4'-diphenylethynebis(oxamate) (dpeba) and N,N'-1,4-di(4-phenylethynyl)phenylenebis(oxamate) (tpeba), respectively. Single crystal X-ray diffraction analysis of 1 confirms the presence of a dicopper(II)tetraaza[3.3]4,4'-diphenylethynophane metallacyclic structure featuring a very long intermetallic distance between the two square planar Cu(II) ions [r = 14.95(1) Å]. The overall parallel-displaced π-stacked conformation of the two nearly planar para substituted diphenylethyne spacers [dihedral angle (ψ) of 7.8(1)°] leads to important deviations from the perpendicular orientation of the copper mean basal planes with respect to the facing benzene planes [dihedral angles (φ) of 56.4(1) and 58.4(1)°]. X-band EPR spectra together with variable-temperature magnetic susceptibility and variable-field magnetization measurements of 1 and 2, both in solution and in the solid state, show the occurrence of a non-negligible, moderate to weak intramolecular antiferromagnetic coupling [-J = 3.9-4.1 (1) and 0.5-0.9 cm(-1) (2); H = -JS1·S2 with S1 = S2 = SCu = 1/2]. Density functional calculations on the BS singlet (S = 0) and triplet (S = 1) spin states of the model complexes 1 and 2 with an ideal orthogonal molecular geometry (ψ = 0° and φ = 90°) support the occurrence of a spin polarization mechanism for the propagation of the exchange interaction between the two unpaired electrons occupying the dxy orbital of each square planar Cu(II) ion through the predominantly π-type orbital pathway of the double p-diphenylethyne (1) and di(phenylethynyl)phenylene spacers (2). Time-dependent density functional calculations reproduce the observed bathochromic shift of the main intraligand (IL) π-π* transition in the electronic absorption spectra of 1 and 2 [λ1 = 308 (1) and 316 nm (2)]. In the series of orthogonal model complexes 1-5 with linear oligo(p-phenylene-ethynylene) (OPE) spacers, -C6H4(C≡CC6H4)n- (n = 1-5), a linear increase of the IL π-π* transition energy with the reciprocal of the intermetallic distance is theoretically predicted [νmax = 1.99 × 10(4) + 2.15 × 10(5) (1/r) (S = 0) or ν = 2.01 × 10(4) + 2.18 × 10(5) (1/r) (S = 1)], which clearly indicates that the effective π-conjugation length increases with the number of phenylethyne repeating units. This is accompanied by an exponential decay of the antiferromagnetic coupling with the intermetallic distance [-J = 1.08 × 10(3) exp(-0.31r)], which supports the ability of the extended π-conjugated OPEs to mediate the exchange interaction between the unpaired electrons of the two Cu(II) centers with intermetallic distances in the range of 1.5-4.3 nm. Further developments may be then envisaged for this new family of oxamato-based dicopper(II) oligo-p-phenylethynophanes on the basis of the unique ligand capacity to act as a molecular antiferromagnetic wire.

14.
Chemistry ; 18(6): 1608-17, 2012 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-22262643

RESUMEN

The concept of "molecular magnetic sponges" was introduced for the first time in 1999 by the creative imagination of the late Olivier Kahn. It refers to the exotic spongelike behavior of certain molecule-based materials that undergo a dramatic change of their magnetic properties upon reversible dehydration/rehydration processes. Here we report a unique example of a manganese(II)-copper(II) mixed-metal-organic framework of formula [Na(H(2)O)(4)](4)[Mn(4){Cu(2)(mpba)(2)(H(2)O)(4)}(3)]·56.5H(2)O (1) (mpba=N,N'-1,3-phenylenebis(oxamate)). Compound 1 possesses a 3D Mn(II)(4)Cu(II)(6) pillared layer structure with mixed square and octagonal pores of approximate dimensions 1.2×1.2 nm and 2.1×3.0 nm, respectively, hosting a large amount of crystallization H(2)O molecules and hydrated Na(I) countercations as guests. It reversibly switches from a crystalline hydrated phase with long-range ferromagnetic ordering at a rather high critical temperature (T(c)) of 22.5 K to an amorphous dehydrated phase with T(c) as low as 2.3 K, which is accompanied by a breathing-type dynamic effect involving a large crystal volume (ca. 45%) and color changes after water desorption/adsorption. The combination of both the open-framework structure and the spongelike optical, mechanical, and magnetic switching behavior in this new class of oxamato-based porous magnets offers fascinating possibilities in designing multifunctional materials for host-guest molecular sensing.

15.
Inorg Chem ; 50(22): 11279-81, 2011 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-22004435

RESUMEN

Self-assembly of the rigid rodlike ligand N,N'-4,4'-diphenylethynebis(oxamate) (dpeba) and Cu(2+) ions affords a novel dinuclear copper(II) metallacyclophane (nBu(4)N)(4)[Cu(2)(dpeba)(2)]·4MeOH·2Et(2)O (1) featuring a very long intermetallic distance (r = 15.0 Å). Magnetic susceptibility measurements for 1 reveal a moderately weak but nonnegligible intramolecular antiferromagnetic coupling between the two metal centers across the double para-substituted diphenylethynediamidate bridge (J = -3.9 cm(-1); H = -JS(1)S(2), where S(1) = S(2) = S(Cu) = (1)/(2)). Density functional electronic structure calculations on 1 support the occurrence of a spin polarization mechanism.

16.
Chem Commun (Camb) ; 46(5): 800-2, 2010 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-20087525

RESUMEN

Experimental evidence on the efficiency of 2,2',4,4'-tetramethoxybenzil for UV-light energy dissipation is provided. This non-phenolic aromatic ketone has a low energy triplet which quickly decays to the ketone ground state, thus avoiding the generation of undesirable reactive species.


Asunto(s)
Cetonas/química , Rayos Ultravioleta , Estructura Molecular
17.
Acc Chem Res ; 43(1): 129-41, 2010 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-19785402

RESUMEN

Dendritic macromolecules with random branch-on-branch topology, termed hyperbranched polymers in the late 1980s, have a decided advantage over symmetrical dendrimers by virtue of typically being accessible in a one-step synthesis. Saving this synthetic effort once had an unfortunate consequence, though: hyperbranching polymerization used to result in a broad distribution of molecular weights (that is, very high polydispersities, often M(w)/M(n) > 5). By contrast, a typical dendrimer synthesis yields a single molecule (in other words, M(w)/M(n) = 1.0), albeit by a labor-intensive, multistep process. But 10 years ago, Sunder and colleagues reported the controlled synthesis of well-defined hyperbranched polyglycerol (PG) via ring-opening multibranching polymerization (ROMBP) of glycidol. Since then, hyperbranched and polyfunctional polyethers with controlled molar mass and low polydispersities (M(w)/M(n) = 1.2-1.9) have been prepared, through various monomer addition protocols, by ROMBP. In this Account, we review the progress in the preparation and application of these uniquely versatile polyether polyols over the past decade. Hyperbranched PGs combine several remarkable features, including a highly flexible aliphatic polyether backbone, multiple hydrophilic groups, and excellent biocompatibility. Within the past decade, intense efforts have been directed at the optimization of synthetic procedures affording PG homo- and copolymers with different molecular weight characteristics and topology. Fundamental parameters of hyperbranched polymers include molar mass, polydispersity, degree of branching, and end-group functionality. Selected approaches for optimizing and tailoring these characteristics are presented and classified with respect to their application potential. Specific functionalization in the core and at the periphery of hyperbranched PG has been pursued to meet the growing demand for novel specialty materials in academia and industry. A variety of fascinating synthetic approaches now provide access to well-defined, complex macromolecular architectures based on polyether polyols with low polydispersity. For instance, a variety of linear-hyperbranched block copolymers has been reported. The inherent attributes of PG-based materials are useful for a number of individual implementation concepts, such as drug encapsulation or surface modification. The excellent biocompatibility of PG has also led to rapidly growing significance in biomedical applications, for example, bioconjugation with peptides, as well as surface attachment for the creation of protein-resistant surfaces.


Asunto(s)
Materiales Biocompatibles/síntesis química , Dendrímeros/síntesis química , Glicerol/síntesis química , Polímeros/síntesis química , Peso Molecular , Nanocápsulas/química , Nanocápsulas/ultraestructura
18.
J Org Chem ; 73(12): 4680-3, 2008 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-18489180

RESUMEN

Quenching and product studies have been performed to demonstrate the suitability of hyperbranched polyethers with a tetrafunctionalized benzophenone core as photocatalysts. The triplet photosensitized transformation of an unsaturated diazo compound has been used as the model reaction. The polymer with highest molecular weight led to a similar product distribution even after several catalytic cycles, which evidences its excellent photostability under prolonged irradiation time. We attribute this to the stabilizing effect of the hyperbranched polymer shell.

19.
Dalton Trans ; (44): 5190-200, 2007 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-17985027

RESUMEN

The preparation, crystal structure and magnetic properties of four heteroleptic copper(II) complexes with the tricyanomethanide (tcm(-)) and the heterocyclic nitrogen donors 3,6-bis(2-pyridyl)pyridazine (dppn), 2,5-bis(2-pyridyl)pyrazine (2,5-dpp), 2,3-bis(2-pyridyl)pyrazine (2,3-dpp) and 2,3-bis(2-pyridyl)quinoxaline (2,3-dpq) are reported, {[Cu(2)(dppn)(OH)(tcm)(2)] x tcm}(n) (1), {[Cu(2,5-dpp)(tcm)] x tcm}(n) (2), {[Cu(2)(2,3-dpp)(2)(tcm)(3)(H(2)O)(0.5)] x tcm x 0.5H(2)O}(n) (3) and [Cu(2,3-dpq)(tcm)(2)](n) (4). 1 has a ladder-like structure with single mu-1,5-tcm ligands forming the sides and a bis-bidentate dppn and a single mu-hydroxo providing the rung. Each copper atom in 1 exhibits a distorted square pyramidal CuN(4)O surrounding: the basal plane is built by the hydroxo-oxygen, a nitrile-nitrogen atom from a tcm group and one pyrazine and a pyridyl nitrogen atoms from the dppn whereas the apical position is filled by a nitrile-nitrogen atom from a symmetry-related tcm ligand. The structures of 2-4 consists of zig-zag (2 and 3)/linear (4) chains of copper(II) ions which are bridged by either bis-bidentate 2,5-dpp (2) and 2,3-dpp (3) molecules or single mu-1,5-tcm (4) groups. The copper atoms in 2 and 4 are five coordinated with distorted trigonal bipyramidal (2) and square pyramidal (4) CuN(5) surroundings. The axial positions in 2 are occupied by two pyridyl-nitrogen atoms from two 2,5-dpp ligands whereas the trigonal plane is built by a nitrile-nitrogen from a terminally bound tcm group and two pyrazine nitrogen atoms from two 2,5-dpp molecules. The basal plane in 4 is defined by a pyridyl and a pyrazine nitrogen atoms from the bidentate 2,3-dpq ligand and two nitrile nitrogen atoms from two tcm groups (one terminal and the other bridging) whereas the apical position is filled by a nitrile nitrogen from another tcm ligand. The crystallographically independent copper atoms in 3 [Cu(1) and Cu(2)] exhibit elongated octahedral geometries being defined by four nitrogen atoms from two 2,3-dpp groups [Cu(1) and Cu(2)] either two terminally bound tcm ligands [Cu(1)] or a water molecule and a monodentate tcm ligand [Cu(2)] in cis positions. Magnetic susceptibility measurements for 1-4 in the temperature range 1.9-295 K reveal the occurrence of strong [J ca.-1000 cm(-1) (1); H = -JS(A) x S(B)] and weak [J = -0.13 (2), -0.67 (3) and -0.18 cm(-1) (4); H = -J Sigma(I)S(i) x S(i+1)] antiferromagnetic interactions in agreement with the different nature of the exchange pathways involved, diazine and single mu-hydroxo (1) and the extended 2,5-dpp (2), 2,3-dpp (3) and single mu-1,5-tcm (4) bridges with copper-copper separations of 3.363(8) (1), 7.111(1) (2), 6.823(1) and 7.056(1) (3) and 7.446(1) A (4).


Asunto(s)
Cobre/química , Magnetismo , Nitrilos/química , Compuestos Organometálicos/química , Cristalografía por Rayos X , Ligandos , Modelos Moleculares , Estructura Molecular , Compuestos Organometálicos/síntesis química , Espectrofotometría Infrarroja/métodos , Temperatura
20.
Org Lett ; 9(11): 2067-70, 2007 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-17458972

RESUMEN

Efficient intramolecular fluorescence quenching in pyrene-benzoylthiophene systems leads to formation of exciplexes. These species interact with 1,3-cyclohexadiene (or styrenes), leading to reactive excited triplexes. The overall process affords [2+2] cross-cycloadducts with an average yield of 57%.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...