Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Aging (Albany NY) ; 12(16): 16195-16210, 2020 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-32852283

RESUMEN

Understanding the microstructural changes related to physiological aging of the cerebral cortex is pivotal to differentiate healthy aging from neurodegenerative processes. The aim of this study was to investigate the age-related global changes of cortical microstructure and regional patterns using multiparametric quantitative MRI (qMRI) in healthy subjects with a wide age range. 40 healthy participants (age range: 2nd to 8th decade) underwent high-resolution qMRI including T1, PD as well as T2, T2* and T2' mapping at 3 Tesla. Cortical reconstruction was performed with the FreeSurfer toolbox, followed by tests for correlations between qMRI parameters and age. Cortical T1 values were negatively correlated with age (p=0.007) and there was a widespread age-related decrease of cortical T1 involving the frontal and the parietotemporal cortex, while T2 was correlated positively with age, both in frontoparietal areas and globally (p=0.004). Cortical T2' values showed the most widespread associations across the cortex and strongest correlation with age (r= -0.724, p=0.0001). PD and T2* did not correlate with age. Multiparametric qMRI allows to characterize cortical aging, unveiling parameter-specific patterns. Quantitative T2' mapping seems to be a promising imaging biomarker of cortical age-related changes, suggesting that global cortical iron deposition is a prominent process in healthy aging.


Asunto(s)
Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/fisiología , Envejecimiento Saludable/fisiología , Imagen por Resonancia Magnética , Adulto , Anciano , Corteza Cerebral/metabolismo , Estudios Transversales , Femenino , Envejecimiento Saludable/metabolismo , Humanos , Hierro/metabolismo , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Adulto Joven
2.
Front Physiol ; 11: 116, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32231581

RESUMEN

PURPOSE: Diffuse cortical damage in relapsing-remitting multiple sclerosis (RRMS) is clinically relevant but cannot be directly assessed with conventional MRI. In this study, it was aimed to use diffusion tensor imaging (DTI) techniques with optimized intrinsic eddy current compensation to quantify and characterize cortical mean diffusivity (MD) and fractional anisotropy (FA) changes in RRMS and to analyze the distribution of these changes across the cortex. MATERIALS AND METHODS: Three-Tesla MRI acquisition, mapping of the MD providing information about the integrity of microstructural barriers and of the FA reflecting axonal density and surface-based analysis with Freesurfer were performed for 24 RRMS patients and 25 control subjects. RESULTS: Across the whole cortex, MD was increased in patients (p < 0.001), while surface-based analysis revealed focal cortical FA decreases. MD and FA changes were distributed inhomogeneously across the cortex, the MD increase being more widespread than the FA decrease. Cortical MD correlated with the Expanded Disability Status Scale (EDSS, r = 0.38, p = 0.03). CONCLUSION: Damage of microstructural barriers occurs inhomogeneously across the cortex in RRMS and might be spatially more widespread than axonal degeneration. The results and, in particular, the correlation with the clinical status indicate that DTI might be a promising technique for the monitoring of cortical damage under treatment in larger clinical studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...