Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38797883

RESUMEN

BACKGROUND: Both healthy plasma and cytoprotective aPC (3K3A-aPC) have been shown to mitigate the endotheliopathy of trauma (EoT), but optimal therapeutics remain unknown. Our aim was therefore to determine optimal therapies to mitigate EoT by investigating the effectiveness of 3K3A-aPC with and without plasma-based resuscitation strategies. METHODS: Electric cell-substrate impedance sensing (ECIS) was used to measure real-time permeability changes in endothelial cells. Cells were treated with a 2 µg/mL solution of aPC 30 minutes prior to stimulation with plasma taken from severely injured trauma patients (ISS > 15 and BD < -6) (TP). Healthy plasma, or plasma frozen within 24 hours (FP24), was added concomitantly with TP. Cells treated with thrombin and untreated cells were included in this study as control groups. RESULTS: A dose-dependent difference was found between the 5% and 10% plasma-treated groups when HUVECs were simultaneously stimulated with TP (µd 7.346 95%CI 4.574 to 10.12). There was no difference when compared to TP alone in the 5% (µd 5.713 95%CI -1.751 to 13.18) or 10% group (µd -1.633 95%CI -9.097 to 5.832). When 3K3A-aPC was added to plasma and TP, the 5% group showed improvement in permeability compared to TP alone (µd 10.11 95%CI 2.642 to 17.57), but there was no difference in the 10% group (µd -1.394 95%CI -8.859 to 6.070). The combination of 3K3A-aPC, plasma, and TP at both the 5% plasma (µd -28.52 95%CI-34.72 to -22.32) and 10% plasma concentrations (µd -40.02 95%CI -46.22 to -33.82) had higher inter-cellular permeability than the 3K3A-aPC pre-incubation group. CONCLUSION: Our data shows that FP24, in a post-trauma environment, pre-treatment with 3K3A-aPC can potentially mitigate the EoT to a greater degree than FP24 with or without 3K3A-aPC. Although further exploration is needed, this represents a potentially ideal and perhaps superior therapeutic treatment for the dysregulated thromboinflammation of injured patients. LEVEL OF EVIDENCE: Prognostic/Epidemiological, Therapeutic/Care Management, Level III.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38745347

RESUMEN

BACKGROUND: Patients with type O blood may have an increased risk of hemorrhagic complications due to lower baseline levels of von Willebrand Factor (vWF) and factor VIII, but the transition to a mortality difference in trauma is less clear. We hypothesized that type O trauma patients will have differential proteomic and metabolomic signatures in response to trauma beyond vWF and FVIII alone. METHODS: Patients meeting the highest level of trauma activation criteria were prospectively enrolled. Blood samples were collected upon arrival to the emergency department. Proteomic and metabolomic (multi-omics) analyses of these samples were performed using liquid chromatography-mass spectrometry. Demographic, clinical, and multi-omics data were compared between patients with type O blood versus all other patients. RESULTS: There were 288 patients with multi-omics data; 146 (51%) had type O blood. Demographics, injury patterns, and initial vital signs and laboratory measurements were not different between groups. Type O patients had increased lengths of stay (7 vs. 6 days, p = 0.041) and a trend towards decreased mortality secondary to traumatic brain injury compared to other causes (TBI, 44.4 % vs. 87.5%, p = 0.055). Type O patients had decreased levels of mannose-binding lectin (MBL) and MBL associated serine proteases 1 and 2 which are required for the initiation of the lectin pathway of complement activation. Type O patients also had metabolite differences signifying energy metabolism and mitochondrial dysfunction. CONCLUSION: Blood type O patients have a unique multi-omics signature, including decreased levels of proteins required to activate the lectin complement pathway. This may lead to overall decreased levels of complement activation and decreased systemic inflammation in the acute phase possibly leading to a survival advantage, especially in TBI. However, this may later impair healing. Future work will need to confirm these associations, and animal studies are needed to test therapeutic targets. LEVEL OF EVIDENCE: Retrospective Comparative Study, Level IV.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38764145

RESUMEN

BACKGROUND: Platelets are well known for their roles in hemostasis, but they also play a key role in thromboinflammatory pathways by regulating endothelial health, stimulating angiogenesis, and mediating host defense through both contact dependent and independent signaling. When activated, platelets degranulate releasing multiple active substances. We hypothesized that the soluble environment formed by trauma platelet releasates attenuates thromboinflammation via mitigation of trauma induced endothelial permeability and metabolomic reprogramming. METHODS: Blood was collected from injured and healthy patients to generate platelet releasates and plasma in parallel. Permeability of endothelial cells when exposed to trauma platelet releasates (TPR) and plasma (TP) was assessed via resistance measurement by Electric Cell-substrate Impedance Sensing (ECIS). Endothelial cells treated with TPR and TP were subjected to mass spectrometry-based metabolomics. RESULTS: TP increased endothelial permeability, whereas TPR decreased endothelial permeability when compared to untreated cells. When TP and TPR were mixed ex vivo, TPR mitigated TP-induced permeability, with significant increase in AUC compared to TP alone. Metabolomics of TPR and TP demonstrated disrupted redox reactions and anti-inflammatory mechanisms. CONCLUSION: TPRs provide endothelial barrier protection against TP-induced endothelial permeability. Our findings highlight a potential beneficial action of activated platelets on the endothelium in injured patients through disrupted redox reactions and increased antioxidants. Our findings support that soluble signaling from platelet degranulation may mitigate the endotheliopathy of trauma. The clinical implications of this are that activated platelets may prove a promising therapeutic target in the complex integration of thrombosis, endotheliopathy, and inflammation in trauma. LEVEL OF EVIDENCE: Prognostic/Epidemiological, Level III.

4.
New Phytol ; 242(5): 1891-1910, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38649790

RESUMEN

Plant water uptake from the soil is a crucial element of the global hydrological cycle and essential for vegetation drought resilience. Yet, knowledge of how the distribution of water uptake depth (WUD) varies across species, climates, and seasons is scarce relative to our knowledge of aboveground plant functions. With a global literature review, we found that average WUD varied more among biomes than plant functional types (i.e. deciduous/evergreen broadleaves and conifers), illustrating the importance of the hydroclimate, especially precipitation seasonality, on WUD. By combining records of rooting depth with WUD, we observed a consistently deeper maximum rooting depth than WUD with the largest differences in arid regions - indicating that deep taproots act as lifelines while not contributing to the majority of water uptake. The most ubiquitous observation across the literature was that woody plants switch water sources to soil layers with the highest water availability within short timescales. Hence, seasonal shifts to deep soil layers occur across the globe when shallow soils are drying out, allowing continued transpiration and hydraulic safety. While there are still significant gaps in our understanding of WUD, the consistency across global ecosystems allows integration of existing knowledge into the next generation of vegetation process models.


Asunto(s)
Árboles , Agua , Agua/metabolismo , Árboles/fisiología , Suelo/química , Estaciones del Año , Raíces de Plantas/fisiología , Raíces de Plantas/metabolismo , Ecosistema , Geografía
5.
New Phytol ; 240(3): 984-1002, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37583086

RESUMEN

Land carbon dynamics in temperate and boreal ecosystems are sensitive to environmental change. Accurately simulating gross primary productivity (GPP) and its seasonality is key for reliable carbon cycle projections. However, significant biases have been found in early spring GPP simulations of northern forests, where observations often suggest a later resumption of photosynthetic activity than predicted by models. Here, we used eddy covariance-based GPP estimates from 39 forest sites that differ by their climate and dominant plant functional types. We used a mechanistic and an empirical light use efficiency (LUE) model to investigate the magnitude and environmental controls of delayed springtime photosynthesis resumption (DSPR) across sites. We found DSPR reduced ecosystem LUE by 30-70% at many, but not all site-years during spring. A significant depression of LUE was found not only in coniferous but also at deciduous forests and was related to combined high radiation and low minimum temperatures. By embedding cold-acclimation effects on LUE that considers the delayed effects of minimum temperatures, initial model bias in simulated springtime GPP was effectively resolved. This provides an approach to improve GPP estimates by considering physiological acclimation and enables more reliable simulations of photosynthesis in northern forests and projections in a warming climate.

6.
New Phytol ; 240(3): 968-983, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37621238

RESUMEN

Accounting for water limitation is key to determining vegetation sensitivity to drought. Quantifying water limitation effects on evapotranspiration (ET) is challenged by the heterogeneity of vegetation types, climate zones and vertically along the rooting zone. Here, we train deep neural networks using flux measurements to study ET responses to progressing drought conditions. We determine a water stress factor (fET) that isolates ET reductions from effects of atmospheric aridity and other covarying drivers. We regress fET against the cumulative water deficit, which reveals the control of whole-column moisture availability. We find a variety of ET responses to water stress. Responses range from rapid declines of fET to 10% of its water-unlimited rate at several savannah and grassland sites, to mild fET reductions in most forests, despite substantial water deficits. Most sensitive responses are found at the most arid and warm sites. A combination of regulation of stomatal and hydraulic conductance and access to belowground water reservoirs, whether in groundwater or deep soil moisture, could explain the different behaviors observed across sites. This variety of responses is not captured by a standard land surface model, likely reflecting simplifications in its representation of belowground water storage.

7.
Science ; 381(6653): eadf5098, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37410847

RESUMEN

Climate change is shifting the growing seasons of plants, affecting species performance and biogeochemical cycles. Yet how the timing of autumn leaf senescence in Northern Hemisphere forests will change remains uncertain. Using satellite, ground, carbon flux, and experimental data, we show that early-season and late-season warming have opposite effects on leaf senescence, with a reversal occurring after the year's longest day (the summer solstice). Across 84% of the northern forest area, increased temperature and vegetation activity before the solstice led to an earlier senescence onset of, on average, 1.9 ± 0.1 days per °C, whereas warmer post-solstice temperatures extended senescence duration by 2.6 ± 0.1 days per °C. The current trajectories toward an earlier onset and slowed progression of senescence affect Northern Hemisphere-wide trends in growing-season length and forest productivity.


Asunto(s)
Cambio Climático , Hojas de la Planta , Senescencia de la Planta , Ecosistema , Bosques , Estaciones del Año , Temperatura
8.
Nat Geosci ; 16(3): 250-256, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36920146

RESUMEN

The rooting-zone water-storage capacity-the amount of water accessible to plants-controls the sensitivity of land-atmosphere exchange of water and carbon during dry periods. How the rooting-zone water-storage capacity varies spatially is largely unknown and not directly observable. Here we estimate rooting-zone water-storage capacity globally from the relationship between remotely sensed vegetation activity, measured by combining evapotranspiration, sun-induced fluorescence and radiation estimates, and the cumulative water deficit calculated from daily time series of precipitation and evapotranspiration. Our findings indicate plant-available water stores that exceed the storage capacity of 2-m-deep soils across 37% of Earth's vegetated surface. We find that biome-level variations of rooting-zone water-storage capacities correlate with observed rooting-zone depth distributions and reflect the influence of hydroclimate, as measured by the magnitude of annual cumulative water-deficit extremes. Smaller-scale variations are linked to topography and land use. Our findings document large spatial variations in the effective root-zone water-storage capacity and illustrate a tight link among the climatology of water deficits, rooting depth of vegetation and its sensitivity to water stress.

9.
Nature ; 614(7947): 281-286, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36755174

RESUMEN

Wetlands have long been drained for human use, thereby strongly affecting greenhouse gas fluxes, flood control, nutrient cycling and biodiversity1,2. Nevertheless, the global extent of natural wetland loss remains remarkably uncertain3. Here, we reconstruct the spatial distribution and timing of wetland loss through conversion to seven human land uses between 1700 and 2020, by combining national and subnational records of drainage and conversion with land-use maps and simulated wetland extents. We estimate that 3.4 million km2 (confidence interval 2.9-3.8) of inland wetlands have been lost since 1700, primarily for conversion to croplands. This net loss of 21% (confidence interval 16-23%) of global wetland area is lower than that suggested previously by extrapolations of data disproportionately from high-loss regions. Wetland loss has been concentrated in Europe, the United States and China, and rapidly expanded during the mid-twentieth century. Our reconstruction elucidates the timing and land-use drivers of global wetland losses, providing an improved historical baseline to guide assessment of wetland loss impact on Earth system processes, conservation planning to protect remaining wetlands and prioritization of sites for wetland restoration4.


Asunto(s)
Recursos Naturales , Análisis Espacio-Temporal , Humedales , Humanos , Biodiversidad , China , Europa (Continente) , Recursos Naturales/provisión & distribución , Estados Unidos , Historia del Siglo XVIII , Historia del Siglo XIX , Historia del Siglo XX , Historia del Siglo XXI
10.
Glob Chang Biol ; 29(7): 1922-1938, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36607160

RESUMEN

Responses of the terrestrial biosphere to rapidly changing environmental conditions are a major source of uncertainty in climate projections. In an effort to reduce this uncertainty, a wide range of global change experiments have been conducted that mimic future conditions in terrestrial ecosystems, manipulating CO2 , temperature, and nutrient and water availability. Syntheses of results across experiments provide a more general sense of ecosystem responses to global change, and help to discern the influence of background conditions such as climate and vegetation type in determining global change responses. Several independent syntheses of published data have yielded distinct databases for specific objectives. Such parallel, uncoordinated initiatives carry the risk of producing redundant data collection efforts and have led to contrasting outcomes without clarifying the underlying reason for divergence. These problems could be avoided by creating a publicly available, updatable, curated database. Here, we report on a global effort to collect and curate 57,089 treatment responses across 3644 manipulation experiments at 1145 sites, simulating elevated CO2 , warming, nutrient addition, and precipitation changes. In the resulting Manipulation Experiments Synthesis Initiative (MESI) database, effects of experimental global change drivers on carbon and nutrient cycles are included, as well as ancillary data such as background climate, vegetation type, treatment magnitude, duration, and, unique to our database, measured soil properties. Our analysis of the database indicates that most experiments are short term (one or few growing seasons), conducted in the USA, Europe, or China, and that the most abundantly reported variable is aboveground biomass. We provide the most comprehensive multifactor global change database to date, enabling the research community to tackle open research questions, vital to global policymaking. The MESI database, freely accessible at doi.org/10.5281/zenodo.7153253, opens new avenues for model evaluation and synthesis-based understanding of how global change affects terrestrial biomes. We welcome contributions to the database on GitHub.


Asunto(s)
Dióxido de Carbono , Ecosistema , Biomasa , Cambio Climático , Clima , Suelo
11.
Nat Ecol Evol ; 7(2): 198-204, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36635342

RESUMEN

Leaf phenology is key for regulating total growing-season mass and energy fluxes. Long-term temporal trends towards earlier leaf unfolding are observed across Northern Hemisphere forests. Phenological dates also vary between years, whereby end-of-season (EOS) dates correlate positively with start-of-season (SOS) dates and negatively with growing-season total net CO2 assimilation (Anet). These associations have been interpreted as the effect of a constrained leaf longevity or of premature carbon (C) sink saturation-with far-reaching consequences for long-term phenology projections under climate change and rising CO2. Here, we use multidecadal ground and remote-sensing observations to show that the relationships between Anet and EOS are opposite at the interannual and the decadal time scales. A decadal trend towards later EOS persists in parallel with a trend towards increasing Anet-in spite of the negative Anet-EOS relationship at the interannual scale. This finding is robust against the use of diverse observations and models. Results indicate that acclimation of phenology has enabled plants to transcend a constrained leaf longevity or premature C sink saturation over the course of several decades, leading to a more effective use of available light and a sustained extension of the vegetation CO2 uptake season over time.


Asunto(s)
Dióxido de Carbono , Bosques , Plantas , Hojas de la Planta , Aclimatación
12.
J Surg Res ; 282: 191-197, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36327701

RESUMEN

INTRODUCTION: Subtotal laparoscopic cholecystectomy (SUB) is an alternative to total laparoscopic cholecystectomy (TOT) when the critical view of safety (CVS) cannot be achieved. Little is known about the clinical factors and postoperative outcomes associated with SUB. The objective was to determine predictive factors and outcomes of SUB as compared to TOT. METHODS: Clinical data from patients admitted from our emergency department to the acute care surgery service who underwent SUB or TOT by an acute care surgery surgeon for acute biliary disease (2017-2019) were reviewed. Wilcoxon rank-sum and Fisher's exact tests were used. RESULTS: 355 patients underwent cholecystectomy for acute cholecystitis; 28 were SUB (7.9%). SUB patients were more likely to be older (57 versus 43 y; P = 0.015), male (60.7% versus 39.3%; P < 0.001), have a history of cirrhosis or liver disease (14.3% versus 2.1%; P = 0.007), and have a higher Charlson-Comorbidity Index (1 versus 0, P = 0.041). SUB had greater leukocytosis (14.6 versus 10.9; P < 0.001), higher total bilirubin (0.9 versus 0.6; P = 0.021), and a higher Tokyo grade (2 versus 1; P < 0.001), and had operative findings including gallbladder decompression (82.1% versus 23.2%; P < 0.001) and inability to achieve the CVS (78.6% versus 3.4%; P < 0.001). SUB patients had an increased length of stay (4 versus 2 d; P < 0.001) and more 1-y readmissions. No major vascular injuries occurred in either group with one biliary injury in the TOT group. CONCLUSIONS: SUB patients present with more significant markers of biliary disease and have more complicated intraoperative and postoperative courses. However, the lack of biliary or vascular injuries suggests that SUB may represent a safe alternative when the CVS cannot be achieved.


Asunto(s)
Colecistectomía Laparoscópica , Colecistitis Aguda , Enfermedades de la Vesícula Biliar , Lesiones del Sistema Vascular , Humanos , Masculino , Vesícula Biliar , Lesiones del Sistema Vascular/cirugía , Colecistectomía/efectos adversos , Colecistitis Aguda/cirugía , Colecistectomía Laparoscópica/efectos adversos , Enfermedades de la Vesícula Biliar/cirugía , Enfermedad Aguda
13.
Photosynth Res ; 155(2): 139-146, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36346510

RESUMEN

Using steady-state photosynthesis-intercellular CO2 concentration (A-Ci) response curves to obtain the maximum rates of ribulose-1,5-bisphosphate carboxylase oxygenase carboxylation (Vcmax) and electron transport (Jmax) is time-consuming and labour-intensive. Instead, the rapid A-Ci response (RACiR) technique provides a potential, high-efficiency method. However, efficient parameter settings of RACiR technique for evergreen broadleaved species remain unclear. Here, we used Li-COR LI-6800 to obtain the optimum parameter settings of RACiR curves for evergreen broadleaved trees and shrubs. We set 11 groups of CO2 gradients ([CO2]), i.e. R1 (400-1500 ppm), R2 (400-200-800 ppm), R3 (420-20-620 ppm), R4 (420-20-820 ppm), R5 (420-20-1020 ppm), R6 (420-20-1220 ppm), R7 (420-20-1520 ppm), R8 (420-20-1820 ppm), R9 (450-50-650 ppm), R10 (650-50 ppm) and R11 (650-50-650 ppm), and then compared the differences between steady-state A-Ci and RACiR curves. We found that Vcmax and Jmax calculated by steady-state A-Ci and RACiR curves overall showed no significant differences across 11 [CO2] gradients (P > 0.05). For the studied evergreens, the efficiency and accuracy of R2, R3, R4, R9 and R10 were higher than the others. Hence, we recommend that the [CO2] gradients of R2, R3, R4, R9 and R10 could be applied preferentially for measurements when using the RACiR technique to obtain Vcmax and Jmax of evergreen broadleaved species.


Asunto(s)
Dióxido de Carbono , Ribulosa-Bifosfato Carboxilasa , Ribulosa-Bifosfato Carboxilasa/metabolismo , Fotosíntesis/fisiología , Transporte de Electrón , Hojas de la Planta/fisiología
14.
Glob Chang Biol ; 29(4): 1037-1053, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36334075

RESUMEN

Gross primary production (GPP) by terrestrial ecosystems is a key quantity in the global carbon cycle. The instantaneous controls of leaf-level photosynthesis are well established, but there is still no consensus on the mechanisms by which canopy-level GPP depends on spatial and temporal variation in the environment. The standard model of photosynthesis provides a robust mechanistic representation for C3 species; however, additional assumptions are required to "scale up" from leaf to canopy. As a consequence, competing models make inconsistent predictions about how GPP will respond to continuing environmental change. This problem is addressed here by means of an empirical analysis of the light use efficiency (LUE) of GPP inferred from eddy covariance carbon dioxide flux measurements, in situ measurements of photosynthetically active radiation (PAR), and remotely sensed estimates of the fraction of PAR (fAPAR) absorbed by the vegetation canopy. Focusing on LUE allows potential drivers of GPP to be separated from its overriding dependence on light. GPP data from over 100 sites, collated over 20 years and located in a range of biomes and climate zones, were extracted from the FLUXNET2015 database and combined with remotely sensed fAPAR data to estimate daily LUE. Daytime air temperature, vapor pressure deficit, diffuse fraction of solar radiation, and soil moisture were shown to be salient predictors of LUE in a generalized linear mixed-effects model. The same model design was fitted to site-based LUE estimates generated by 16 terrestrial ecosystem models. The published models showed wide variation in the shape, the strength, and even the sign of the environmental effects on modeled LUE. These findings highlight important model deficiencies and suggest a need to progress beyond simple "goodness of fit" comparisons of inferred and predicted carbon fluxes toward an approach focused on the functional responses of the underlying dependencies.


Asunto(s)
Ecosistema , Fotosíntesis , Fotosíntesis/fisiología , Clima , Ciclo del Carbono/fisiología , Temperatura , Estaciones del Año
15.
Nat Plants ; 8(11): 1304-1316, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36303010

RESUMEN

The global carbon and water cycles are governed by the coupling of CO2 and water vapour exchanges through the leaves of terrestrial plants, controlled by plant adaptations to balance carbon gains and hydraulic risks. We introduce a trait-based optimality theory that unifies the treatment of stomatal responses and biochemical acclimation of plants to environments changing on multiple timescales. Tested with experimental data from 18 species, our model successfully predicts the simultaneous decline in carbon assimilation rate, stomatal conductance and photosynthetic capacity during progressive soil drought. It also correctly predicts the dependencies of gas exchange on atmospheric vapour pressure deficit, temperature and CO2. Model predictions are also consistent with widely observed empirical patterns, such as the distribution of hydraulic strategies. Our unified theory opens new avenues for reliably modelling the interactive effects of drying soil and rising atmospheric CO2 on global photosynthesis and transpiration.


Asunto(s)
Dióxido de Carbono , Estomas de Plantas , Estomas de Plantas/fisiología , Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Suelo , Carbono
16.
Am Surg ; 88(5): 953-958, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35275764

RESUMEN

BACKGROUND: The American Association for the Surgery of Trauma (AAST) has developed a grading system for emergency general surgery (EGS) conditions. We sought to validate the AAST EGS grades for patients undergoing urgent/emergent colorectal resection. METHODS: Patients enrolled in the "Eastern Association for the Surgery of Trauma Multicenter Colorectal Resection in EGS-to anastomose or not to anastomose" study undergoing urgent/emergent surgery for obstruction, ischemia, or diverticulitis were included. Baseline demographics, comorbidity severity as defined by Charlson comorbidity index (CCI), procedure type, and AAST grade were prospectively collected. Outcomes included length of stay (LOS) in-hospital mortality, and surgical complications (superficial/deep/organ-space surgical site infection, anastomotic leak, stoma complication, fascial dehiscence, and need for further intervention). Multivariable logistic regression models were used to describe outcomes and risk factors for surgical complication or mortality. RESULTS: There were 367 patients, with a mean (± SD) age of 62 ± 15 years. 39% were women. The median interquartile range (IQR) CCI was 4 (2-6). Overall, the pathologies encompassed the following AAST EGS grades: I (17, 5%), II (54, 15%), III (115, 31%), IV (95, 26%), and V (86, 23%). Management included laparoscopic (24, 7%), open (319, 87%), and laparoscopy converted to laparotomy (24, 6%). Higher AAST grade was associated with laparotomy (P = .01). The median LOS was 13 days (8-22). At least 1 surgical complication occurred in 33% of patients and the mortality rate was 14%. Development of at least 1 surgical complication, need for unplanned intervention, mortality, and increased LOS were associated with increasing AAST severity grade. On multivariable analysis, factors predictive of in-hospital mortality included AAST organ grade, CCI, and preoperative vasopressor use (odds ratio (OR) 1.9, 1.6, 3.1, respectively). The American Association for the Surgery of Trauma emergency general surgery grade was also associated with the development of at least 1 surgical complication (OR 2.5), while CCI, preoperative vasopressor use, respiratory failure, and pneumoperitoneum were not. CONCLUSION: The American Association for the Surgery of Trauma emergency general surgery grading systems display construct validity for mortality and surgical complications after urgent/emergent colorectal resection. These results support incorporation of AAST EGS grades for quality benchmarking and surgical outcomes research.


Asunto(s)
Neoplasias Colorrectales , Cirugía General , Laparoscopía , Anciano , Femenino , Humanos , Tiempo de Internación , Persona de Mediana Edad , Estudios Retrospectivos , Índice de Severidad de la Enfermedad , Resultado del Tratamiento , Estados Unidos
17.
J Exp Bot ; 73(8): 2576-2588, 2022 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-35134157

RESUMEN

Future climate will be characterized by an increase in frequency and duration of drought and warming that exacerbates atmospheric evaporative demand. How trees acclimate to long-term soil moisture changes and whether these long-term changes alter trees' sensitivity to short-term (day to months) variations of vapor pressure deficit (VPD) and soil moisture is largely unknown. Leaf gas exchange measurements were performed within a long-term (17 years) irrigation experiment in a drought-prone Scots pine-dominated forest in one of Switzerland's driest areas on trees in naturally dry (control), irrigated, and 'irrigation-stop' (after 11 years of irrigation) conditions. Seventeen years of irrigation increased photosynthesis (A) and stomatal conductance (gs) and reduced gs sensitivity to increasing VPD and soil drying. Following irrigation-stop, gas exchange decreased only after 3 years. After 5 years, maximum carboxylation (Vcmax) and electron transport (Jmax) rates in irrigation-stop recovered to similar levels as to before the irrigation-stop. These results suggest that long-term release from soil drought reduces the sensitivity to VPD and that atmospheric constraints may play an increasingly important role in combination with soil drought. Moreover, our study indicates that structural adjustments lead to an attenuation of initially strong leaf-level acclimation to strong multiple-year drought.


Asunto(s)
Sequías , Árboles , Aclimatación , Bosques , Fotosíntesis , Hojas de la Planta/química , Suelo , Agua/análisis
18.
Jt Comm J Qual Patient Saf ; 48(2): 81-91, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34756824

RESUMEN

BACKGROUND: Reintubation is associated with significant morbidity and mortality. The reintubation rate in surgical ICUs (SICUs) is ∼10% nationally but was 17.0% in our SICU. The objective of this study was to determine if the reintubation rate could be reduced with a protocol for extubation assessment and post-extubation care consisting of standardized extubation criteria and targeted interventions for patients at high risk for reintubation. METHODS: Standardized extubation criteria for all SICU patients were identified via literature review and best-practice guidelines. High reintubation risk criteria were identified (age ≥ 65 years, chronic cardiopulmonary disease, ≥ 4 days intubated, emergency intubation, and fluid balance ≥ 5 liters) through a literature review and 13-month retrospective review of reintubations in our institution's SICU. Patients meeting at least one criterion putting them at higher risk for reintubation received interventions including post-extubation high-flow nasal cannula for 24 hours and algorithm-guided respiratory therapy. RESULTS: During the 12-month period following protocol implementation, 36 of 402 extubations resulted in reintubations (9.0% vs. 17.0% preintervention, p < 0.001). Among all extubations, 305 (75.9%) were identified as high risk. Among reintubated patients, 34 (94.4%) met high-risk criteria. The mortality rate for reintubated patients was 40.0%, compared to 3.3% in those not reintubated (p < 0.001). The high-risk screening tool had a negative predictive value of 98%. CONCLUSION: A multifaceted and pragmatic extubation and post-extubation care protocol significantly reduced one SICU's reintubation rate. This protocol can be easily implemented in any SICU to improve patient outcomes following extubation.


Asunto(s)
Extubación Traqueal , Intubación Intratraqueal , Anciano , Extubación Traqueal/efectos adversos , Extubación Traqueal/normas , Cánula , Humanos , Unidades de Cuidados Intensivos , Intubación Intratraqueal/efectos adversos , Intubación Intratraqueal/normas , Estudios Retrospectivos
19.
New Phytol ; 231(6): 2125-2141, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34131932

RESUMEN

Global vegetation and land-surface models embody interdisciplinary scientific understanding of the behaviour of plants and ecosystems, and are indispensable to project the impacts of environmental change on vegetation and the interactions between vegetation and climate. However, systematic errors and persistently large differences among carbon and water cycle projections by different models highlight the limitations of current process formulations. In this review, focusing on core plant functions in the terrestrial carbon and water cycles, we show how unifying hypotheses derived from eco-evolutionary optimality (EEO) principles can provide novel, parameter-sparse representations of plant and vegetation processes. We present case studies that demonstrate how EEO generates parsimonious representations of core, leaf-level processes that are individually testable and supported by evidence. EEO approaches to photosynthesis and primary production, dark respiration and stomatal behaviour are ripe for implementation in global models. EEO approaches to other important traits, including the leaf economics spectrum and applications of EEO at the community level are active research areas. Independently tested modules emerging from EEO studies could profitably be integrated into modelling frameworks that account for the multiple time scales on which plants and plant communities adjust to environmental change.


Asunto(s)
Ecosistema , Plantas , Cambio Climático , Hojas de la Planta , Fenómenos Fisiológicos de las Plantas
20.
Nat Ecol Evol ; 5(8): 1110-1122, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34168336

RESUMEN

A poor understanding of the fraction of global plant biomass occurring belowground as roots limits our understanding of present and future ecosystem function and carbon pools. Here we create a database of root-mass fractions (RMFs), an index of plant below- versus aboveground biomass distributions, and generate quantitative, spatially explicit global maps of RMFs in trees, shrubs and grasses. Our analyses reveal large gradients in RMFs both across and within vegetation types that can be attributed to resource availability. High RMFs occur in cold and dry ecosystems, while low RMFs dominate in warm and wet regions. Across all vegetation types, the directional effect of temperature on RMFs depends on water availability, suggesting feedbacks between heat, water and nutrient supply. By integrating our RMF maps with existing aboveground plant biomass information, we estimate that in forests, shrublands and grasslands, respectively, 22%, 47% and 67% of plant biomass exists belowground, with a total global belowground fraction of 24% (20-28%), that is, 113 (90-135) Gt carbon. By documenting the environmental correlates of root biomass allocation, our results can inform model projections of global vegetation dynamics under current and future climate scenarios.


Asunto(s)
Ecosistema , Plantas , Biomasa , Carbono , Bosques
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...