Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Transbound Emerg Dis ; 69(4): 1963-1982, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34169659

RESUMEN

Epidemiological models of notifiable livestock disease are typically framed at a national level and targeted for specific diseases. There are inherent difficulties in extending models beyond national borders as details of the livestock population, production systems and marketing systems of neighbouring countries are not always readily available. It can also be a challenge to capture heterogeneities in production systems, control policies, and response resourcing across multiple countries, in a single transboundary model. In this paper, we describe EuFMDiS, a continental-scale modelling framework for transboundary animal disease, specifically designed to support emergency animal disease planning in Europe. EuFMDiS simulates the spread of livestock disease within and between countries and allows control policies to be enacted and resourced on a per-country basis. It provides a sophisticated decision support tool that can be used to look at the risk of disease introduction, establishment and spread; control approaches in terms of effectiveness and costs; resource management; and post-outbreak management issues.


Asunto(s)
Enfermedades de los Animales , Fiebre Aftosa , Enfermedades de los Animales/epidemiología , Animales , Brotes de Enfermedades/prevención & control , Brotes de Enfermedades/veterinaria , Europa (Continente)/epidemiología , Fiebre Aftosa/epidemiología , Ganado
2.
Front Vet Sci ; 8: 727209, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34778427

RESUMEN

Contingency planning allows veterinary authorities to prepare a rapid response in the event of a disease outbreak. A recently published foot-and-mouth disease (FMD) simulation study indicated concerns whether capacity was sufficient to control a potential FMD epidemic in Austria. The objectives of the study presented here were to estimate the human resources required to implement FMD control measures and to identify areas of the operational activities that could potentially delay successful control of the disease. The stochastic spatial simulation model EuFMDiS (The European Foot-and-Mouth Disease Spread Model) was used to simulate a potential FMD outbreak and its economic impact, including different control scenarios based on variations of culling, vaccination, and pre-emptive depopulation. In this context, the utilization of human resources was assessed based on the associated EuFMDiS output regarding the performance of operational activities. The assessments show that the number of personnel needed in an outbreak with a stamping-out policy would reach the peak at the end of the second week of control with a median of 540 (257-926) individuals, out of which 31% would be veterinarians. Approximately 58% of these human resources would be attributable to surveillance, followed by staff for cleaning and disinfection activities. Our analysis demonstrates that, of the operational activities, surveillance personnel were the largest factor influencing the magnitude of the outbreak. The aim of the assessment presented here is to assist veterinary authorities in the contingency planning of required human resources to respond effectively to an outbreak of animal diseases such as FMD.

3.
Front Vet Sci ; 7: 594753, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33521078

RESUMEN

An outbreak of foot-and mouth disease (FMD) in an FMD-free country such as Austria would likely have serious consequences for the national livestock sector and economy. The objective of this study was to analyse the epidemiological and economic impact of an FMD outbreak in Austria in order to (i) evaluate the effectiveness of different control measures in two Austrian regions with different livestock structure and density, (ii) analyse the associated costs of the control measures and the losses resulting from trade restrictions on livestock and livestock products and (iii) assess the resources that would be required to control the FMD outbreak. The European Foot-and-Mouth Disease Spread Model (EuFMDiS) was used to simulate a potential FMD outbreak. Based on the epidemiological outputs of the model, the economic impact of the outbreak was assessed. The analysis of the simulations showed that the success of control strategies depends largely on the type of control measures, the geographical location, the availability of sufficient resources, and the speed of intervention. The comparison of different control strategies suggested that from an economic point of view the implementation of additional control measures, such as pre-emptive depopulation of susceptible herds, would be efficient if the epidemic started in an area with high livestock density. Depending on the chosen control measures and the affected region, the majority of the total costs would be attributable to export losses (e.g., each day of an FMD epidemic costs Austria € 9-16 million). Our analysis indicated that the currently estimated resources for surveillance, cleaning, and disinfection during an FMD outbreak in Austria would be insufficient, which would lead to an extended epidemic control duration. We have shown that the control of an FMD outbreak can be improved by implementing a contingency strategy adapted to the affected region and by placing particular focus on an optimal resource allocation and rapid detection of the disease in Austria. The model results can assist veterinary authorities in planning resources and implementing cost-effective control measures for future outbreaks of highly contagious viral diseases.

4.
Vet Rec ; 182(9): 257, 2018 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-29363572

RESUMEN

Bluetongue virus (BTV) is an emerging transboundary disease in Europe, which can cause significant production losses among ruminants. The analysis presented here assessed the costs of BTV surveillance and vaccination programmes in Austria and Switzerland between 2007 and 2016. Costs were compared with respect to time, type of programme, geographical area and who was responsible for payment. The total costs of the BTV vaccination and surveillance programmes in Austria amounted to €23.6 million, whereas total costs in Switzerland were €18.3 million. Our analysis demonstrates that the costs differed between years and geographical areas, both within and between the two countries. Average surveillance costs per animal amounted to approximately €3.20 in Austria compared with €1.30 in Switzerland, whereas the average vaccination costs per animal were €6.20 in Austria and €7.40 in Switzerland. The comparability of the surveillance costs is somewhat limited, however, due to differences in each nation's surveillance (and sampling) strategy. Given the importance of the export market for cattle production, investments in such programmes are more justified for Austria than for Switzerland. The aim of the retrospective assessment presented here is to assist veterinary authorities in planning and implementing cost-effective and efficient control strategies for emerging livestock diseases.


Asunto(s)
Lengua Azul/epidemiología , Lengua Azul/prevención & control , Costos y Análisis de Costo , Programas de Inmunización/economía , Animales , Austria/epidemiología , Bovinos , Enfermedades de los Bovinos/epidemiología , Enfermedades de los Bovinos/prevención & control , Enfermedades de las Cabras/epidemiología , Enfermedades de las Cabras/prevención & control , Cabras , Vigilancia de la Población , Estudios Retrospectivos , Ovinos , Suiza/epidemiología
5.
Vet J ; 206(2): 154-60, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26371833

RESUMEN

This study was designed to evaluate the costs between 2005 and 2013 of the national bluetongue virus (BTV) surveillance and vaccination programmes before, during and after the BTV serotype 8 (BTV-8) outbreak in Austria commencing in 2008. In addition to an assessment of the temporal development of costs, a spatial cost analysis was performed. Within the context of this study, the term 'costs' refers to actual financial expenditure and imputed monetary costs for contributions in-kind. Costs were financed directly by the private-public sectors, by the European Commission (EC), and (in-kind) by responsible national institutions and individuals (e.g. blood sampling by veterinarians). The total net cost of the BTV-8 surveillance and vaccination programmes arising from the outbreak amounted to €22.8 million (0.86% of the national agricultural Gross Value Added), of which 32% was allocated to surveillance and 68% to the vaccination programme. Of the total programme costs, the EC supplied €4.9 million, while the remaining costs (€18 million) were directly financed from national resources. Of the latter, €14.5 million was classed as public costs, including €2 million contributions in-kind, and €3.4 million as private costs. The assessment of the costs revealed heterogeneous temporal and spatial distributions. The methodology of this analysis might assist decision makers in calculating costs for other surveillance and intervention programmes. The assessment of contributions in-kind is of importance to public authorities as it increases visibility of the available resources and shows how they have been employed. This study also demonstrates the importance of tracking changing costs per payer over time.


Asunto(s)
Virus de la Lengua Azul/clasificación , Lengua Azul/epidemiología , Costos y Análisis de Costo , Animales , Austria/epidemiología , Lengua Azul/prevención & control , Lengua Azul/virología , Vigilancia de la Población , Ovinos , Vacunación/economía , Vacunación/veterinaria , Vacunas Virales/economía , Vacunas Virales/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...