Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
1.
Nat Commun ; 15(1): 3816, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769293

RESUMEN

SARS-CoV-2 infection causes severe pulmonary manifestations, with poorly understood mechanisms and limited treatment options. Hyperferritinemia and disrupted lung iron homeostasis in COVID-19 patients imply that ferroptosis, an iron-dependent cell death, may occur. Immunostaining and lipidomic analysis in COVID-19 lung autopsies reveal increases in ferroptosis markers, including transferrin receptor 1 and malondialdehyde accumulation in fatal cases. COVID-19 lungs display dysregulation of lipids involved in metabolism and ferroptosis. We find increased ferritin light chain associated with severe COVID-19 lung pathology. Iron overload promotes ferroptosis in both primary cells and cancerous lung epithelial cells. In addition, ferroptosis markers strongly correlate with lung injury severity in a COVID-19 lung disease model using male Syrian hamsters. These results reveal a role for ferroptosis in COVID-19 pulmonary disease; pharmacological ferroptosis inhibition may serve as an adjuvant therapy to prevent lung damage during SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Ferroptosis , Pulmón , Mesocricetus , SARS-CoV-2 , COVID-19/virología , COVID-19/metabolismo , COVID-19/patología , Animales , Humanos , Masculino , Pulmón/patología , Pulmón/virología , Pulmón/metabolismo , SARS-CoV-2/fisiología , Femenino , Hierro/metabolismo , Persona de Mediana Edad , Modelos Animales de Enfermedad , Anciano , Lesión Pulmonar/virología , Lesión Pulmonar/metabolismo , Lesión Pulmonar/patología , Sobrecarga de Hierro/metabolismo , Adulto , Cricetinae
2.
Immunity ; 57(5): 941-956, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38749397

RESUMEN

Ferroptosis is a type of regulated cell death that drives the pathophysiology of many diseases. Oxidative stress is detectable in many types of regulated cell death, but only ferroptosis involves lipid peroxidation and iron dependency. Ferroptosis originates and propagates from several organelles, including the mitochondria, endoplasmic reticulum, Golgi, and lysosomes. Recent data have revealed that immune cells can both induce and undergo ferroptosis. A mechanistic understanding of how ferroptosis regulates immunity is critical to understanding how ferroptosis controls immune responses and how this is dysregulated in disease. Translationally, more work is needed to produce ferroptosis-modulating immunotherapeutics. This review focuses on the role of ferroptosis in immune-related diseases, including infection, autoimmune diseases, and cancer. We discuss how ferroptosis is regulated in immunity, how this regulation contributes to disease pathogenesis, and how targeting ferroptosis may lead to novel therapies.


Asunto(s)
Ferroptosis , Hierro , Ferroptosis/inmunología , Humanos , Animales , Hierro/metabolismo , Neoplasias/inmunología , Neoplasias/metabolismo , Peroxidación de Lípido/inmunología , Enfermedades Autoinmunes/inmunología , Inmunidad , Estrés Oxidativo/inmunología , Mitocondrias/metabolismo , Mitocondrias/inmunología
4.
Nat Commun ; 15(1): 2531, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38514704

RESUMEN

YEATS domain-containing protein GAS41 is a histone reader and oncogene. Here, through genome-wide CRISPR-Cas9 screenings, we identify GAS41 as a repressor of ferroptosis. GAS41 interacts with NRF2 and is critical for NRF2 to activate its targets such as SLC7A11 for modulating ferroptosis. By recognizing the H3K27-acetylation (H3K27-ac) marker, GAS41 is recruited to the SLC7A11 promoter, independent of NRF2 binding. By bridging the interaction between NRF2 and the H3K27-ac marker, GAS41 acts as an anchor for NRF2 on chromatin in a promoter-specific manner for transcriptional activation. Moreover, the GAS41-mediated effect on ferroptosis contributes to its oncogenic role in vivo. These data demonstrate that GAS41 is a target for modulating tumor growth through ferroptosis. Our study reveals a mechanism for GAS41-mediated regulation in transcription by anchoring NRF2 on chromatin, and provides a model in which the DNA binding activity on chromatin by transcriptional factors (NRF2) can be directly regulated by histone markers (H3K27-ac).


Asunto(s)
Ferroptosis , Histonas , Histonas/metabolismo , Cromatina/genética , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Ferroptosis/genética , Oncogenes
5.
Protein Cell ; 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38430542

RESUMEN

Ferroptosis has been recognized as a unique cell death modality driven by excessive lipid peroxidation and unbalanced cellular metabolism. In this study, we established a protein interaction landscape for ferroptosis pathways through proteomic analyses, and identified choline/ethanolamine phosphotransferase 1 (CEPT1) as a lysophosphatidylcholine acyltransferase 3 (LPCAT3)-interacting protein that regulates LPCAT3 protein stability. In contrast to its known role in promoting phospholipid synthesis, we showed that CEPT1 suppresses ferroptosis potentially by interacting with phospholipases and breaking down certain pro-ferroptotic polyunsaturated fatty acid (PUFA)-containing phospholipids. Together, our study reveals a previously unrecognized role of CEPT1 in suppressing ferroptosis.

6.
Cell Metab ; 36(4): 762-777.e9, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38309267

RESUMEN

Although the role of ferroptosis in killing tumor cells is well established, recent studies indicate that ferroptosis inducers also sabotage anti-tumor immunity by killing neutrophils and thus unexpectedly stimulate tumor growth, raising a serious issue about whether ferroptosis effectively suppresses tumor development in vivo. Through genome-wide CRISPR-Cas9 screenings, we discover a pleckstrin homology-like domain family A member 2 (PHLDA2)-mediated ferroptosis pathway that is neither ACSL4-dependent nor requires common ferroptosis inducers. PHLDA2-mediated ferroptosis acts through the peroxidation of phosphatidic acid (PA) upon high levels of reactive oxygen species (ROS). ROS-induced ferroptosis is critical for tumor growth in the absence of common ferroptosis inducers; strikingly, loss of PHLDA2 abrogates ROS-induced ferroptosis and promotes tumor growth but has no obvious effect in normal tissues in both immunodeficient and immunocompetent mouse tumor models. These data demonstrate that PHLDA2-mediated PA peroxidation triggers a distinct ferroptosis response critical for tumor suppression and reveal that PHLDA2-mediated ferroptosis occurs naturally in vivo without any treatment from ferroptosis inducers.


Asunto(s)
Neoplasias , Animales , Ratones , Modelos Animales de Enfermedad , Peroxidación de Lípido/fisiología , Especies Reactivas de Oxígeno/metabolismo
7.
Cell ; 187(5): 1177-1190.e18, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38366593

RESUMEN

Phospholipids containing a single polyunsaturated fatty acyl tail (PL-PUFA1s) are considered the driving force behind ferroptosis, whereas phospholipids with diacyl-PUFA tails (PL-PUFA2s) have been rarely characterized. Dietary lipids modulate ferroptosis, but the mechanisms governing lipid metabolism and ferroptosis sensitivity are not well understood. Our research revealed a significant accumulation of diacyl-PUFA phosphatidylcholines (PC-PUFA2s) following fatty acid or phospholipid treatments, correlating with cancer cell sensitivity to ferroptosis. Depletion of PC-PUFA2s occurred in aging and Huntington's disease brain tissue, linking it to ferroptosis. Notably, PC-PUFA2s interacted with the mitochondrial electron transport chain, generating reactive oxygen species (ROS) for initiating lipid peroxidation. Mitochondria-targeted antioxidants protected cells from PC-PUFA2-induced mitochondrial ROS (mtROS), lipid peroxidation, and cell death. These findings reveal a critical role for PC-PUFA2s in controlling mitochondria homeostasis and ferroptosis in various contexts and explain the ferroptosis-modulating mechanisms of free fatty acids. PC-PUFA2s may serve as diagnostic and therapeutic targets for modulating ferroptosis.


Asunto(s)
Grasas de la Dieta , Ferroptosis , Fosfolípidos , Ácidos Grasos , Fosfatidilcolinas , Fosfolípidos/química , Fosfolípidos/metabolismo , Especies Reactivas de Oxígeno , Grasas de la Dieta/metabolismo
8.
Dev Cell ; 59(7): 869-881.e6, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38359832

RESUMEN

Spatial single-cell omics provides a readout of biochemical processes. It is challenging to capture the transient lipidome/metabolome from cells in a native tissue environment. We employed water gas cluster ion beam secondary ion mass spectrometry imaging ([H2O]n>28K-GCIB-SIMS) at ≤3 µm resolution using a cryogenic imaging workflow. This allowed multiple biomolecular imaging modes on the near-native-state liver at single-cell resolution. Our workflow utilizes desorption electrospray ionization (DESI) to build a reference map of metabolic heterogeneity and zonation across liver functional units at tissue level. Cryogenic dual-SIMS integrated metabolomics, lipidomics, and proteomics in the same liver lobules at single-cell level, characterizing the cellular landscape and metabolic states in different cell types. Lipids and metabolites classified liver metabolic zones, cell types and subtypes, highlighting the power of spatial multi-omics at high spatial resolution for understanding celluar and biomolecular organizations in the mammalian liver.


Asunto(s)
Fenómenos Bioquímicos , Lipidómica , Animales , Lipidómica/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Lípidos/análisis , Hígado , Mamíferos
9.
Artículo en Inglés | MEDLINE | ID: mdl-38306027

RESUMEN

 Ferroptosis is a form of programmed cell death that plays a significant role in causing several diseases such as heart attack and heart failure, through alterations in fat, amino acid, and iron metabolism. Comprehending the regulatory mechanisms of ferroptosis signaling is critical because it has a considerable effect on the elderly's mortality. Conversely, age-related changes in substrate metabolism and metabolite levels are recognized to give rise to obesity. Furthermore, research has proposed that aging and obesity-related changes in substrate metabolism may aggravate ferroptosis. The suppression of ferroptosis holds potential as a successful therapeutic approach for managing different diseases, including sarcopenia, cardiovascular diseases, and central nervous system diseases. However, the pathologic and biological mechanisms behind the function of ferroptosis are not fully comprehended yet. Physical activity could affect lipid, amino acid, and iron metabolism to modulate ferroptosis. The aim of this study is to showcase the current understanding of the molecular mechanisms leading to ferroptosis and discuss the role of aging and physical activity in this phenomenon.

10.
Nat Cell Biol ; 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38424270

RESUMEN

Ferroptosis, an intricately regulated form of cell death characterized by uncontrolled lipid peroxidation, has garnered substantial interest since this term was first coined in 2012. Recent years have witnessed remarkable progress in elucidating the detailed molecular mechanisms that govern ferroptosis induction and defence, with particular emphasis on the roles of heterogeneity and plasticity. In this Review, we discuss the molecular ecosystem of ferroptosis, with implications that may inform and enable safe and effective therapeutic strategies across a broad spectrum of diseases.

11.
Cell Chem Biol ; 31(4): 805-819.e9, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38061356

RESUMEN

Transcription factors have proven difficult to target with small molecules because they lack pockets necessary for potent binding. Disruption of protein expression can suppress targets and enable therapeutic intervention. To this end, we developed a drug discovery workflow that incorporates cell-line-selective screening and high-throughput expression profiling followed by regulatory network analysis to identify compounds that suppress regulatory drivers of disease. Applying this approach to neuroblastoma (NBL), we screened bioactive molecules in cell lines representing its MYC-dependent (MYCNA) and mesenchymal (MES) subtypes to identify selective compounds, followed by PLATESeq profiling of treated cells. This revealed compounds that disrupt a sub-network of MYCNA-specific regulatory proteins, resulting in MYCN degradation in vivo. The top hit was isopomiferin, a prenylated isoflavonoid that inhibited casein kinase 2 (CK2) in cells. Isopomiferin and its structural analogs inhibited MYC and MYCN in NBL and lung cancer cells, highlighting the general MYC-inhibiting potential of this unique scaffold.

12.
Cell Chem Biol ; 31(2): 249-264.e7, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-37944523

RESUMEN

Iron overload, characterized by accumulation of iron in tissues, induces a multiorgan toxicity whose mechanisms are not fully understood. Using cultured cell lines, Caenorhabditis elegans, and mice, we found that ferroptosis occurs in the context of iron-overload-mediated damage. Exogenous oleic acid protected against iron-overload-toxicity in cell culture and Caenorhabditis elegans by suppressing ferroptosis. In mice, oleic acid protected against FAC-induced liver lipid peroxidation and damage. Oleic acid changed the cellular lipid composition, characterized by decreased levels of polyunsaturated fatty acyl phospholipids and decreased levels of ether-linked phospholipids. The protective effect of oleic acid in cells was attenuated by GW6471 (PPAR-α antagonist), as well as in Caenorhabditis elegans lacking the nuclear hormone receptor NHR-49 (a PPAR-α functional homologue). These results highlight ferroptosis as a driver of iron-overload-mediated damage, which is inhibited by oleic acid. This monounsaturated fatty acid represents a potential therapeutic approach to mitigating organ damage in iron overload individuals.


Asunto(s)
Ferroptosis , Sobrecarga de Hierro , Animales , Ratones , Caenorhabditis elegans , Ácido Oléico/farmacología , Receptores Activados del Proliferador del Peroxisoma , Sobrecarga de Hierro/tratamiento farmacológico , Hierro , Éteres Fosfolípidos
13.
Life Sci Alliance ; 7(1)2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37891002

RESUMEN

We previously reported that activation of p53 by APR-246 reprograms tumor-associated macrophages to overcome immune checkpoint blockade resistance. Here, we demonstrate that APR-246 and its active moiety, methylene quinuclidinone (MQ) can enhance the immunogenicity of tumor cells directly. MQ treatment of murine B16F10 melanoma cells promoted activation of melanoma-specific CD8+ T cells and increased the efficacy of a tumor cell vaccine using MQ-treated cells even when the B16F10 cells lacked p53. We then designed a novel combination of APR-246 with the TLR-4 agonist, monophosphoryl lipid A, and a CD40 agonist to further enhance these immunogenic effects and demonstrated a significant antitumor response. We propose that the immunogenic effect of MQ can be linked to its thiol-reactive alkylating ability as we observed similar immunogenic effects with the broad-spectrum cysteine-reactive compound, iodoacetamide. Our results thus indicate that combination of APR-246 with immunomodulatory agents may elicit effective antitumor immune response irrespective of the tumor's p53 mutation status.


Asunto(s)
Linfocitos T CD8-positivos , Melanoma , Ratones , Animales , Proteína p53 Supresora de Tumor/genética , Antígenos de Neoplasias
14.
Trends Pharmacol Sci ; 45(1): 67-80, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38103980

RESUMEN

The emerging and powerful field of spatial pharmacology can map the spatial distribution of drugs and their metabolites, as well as their effects on endogenous biomolecules including metabolites, lipids, proteins, peptides, and glycans, without the need for labeling. This is enabled by mass spectrometry imaging (MSI) that provides previously inaccessible information in diverse phases of drug discovery and development. We provide a perspective on how MSI technologies and computational tools can be implemented to reveal quantitative spatial drug pharmacokinetics and toxicology, tissue subtyping, and associated biomarkers. We also highlight the emerging potential of comprehensive spatial pharmacology through integration of multimodal MSI data with other spatial technologies. Finally, we describe how to overcome challenges including improving reproducibility and compound annotation to generate robust conclusions that will improve drug discovery and development processes.


Asunto(s)
Descubrimiento de Drogas , Péptidos , Humanos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Reproducibilidad de los Resultados , Biomarcadores/metabolismo
15.
ACS Med Chem Lett ; 14(12): 1664-1672, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38116412

RESUMEN

We previously identified the natural products isopomiferin and pomiferin as powerful, indirect MYCN-ablating agents. In this work, we expand on their mechanism of action and find that casein kinase 2 (CK2), phosphoinositide 3-kinase (PI3K), checkpoint kinase 1 (CHK1) and serine/threonine protein kinase 38-like (STK38L), as well as STK38, work synchronously to create a field effect that maintains MYCN stability. By systematically inhibiting these kinases, we degraded MYCN and induced cell death. Additionally, we synthesized and tested several simpler and more cost-effective pomiferin analogues, which successfully emulated the compound's MYCN ablating activity. Our work identified and characterized key kinases that can be targeted to interfere with the stability of the MYCN protein in NBL cells, demonstrating the efficacy of an indirect approach to targeting "undruggable" cancer drivers.

16.
Cell Death Dis ; 14(9): 637, 2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37752118

RESUMEN

Since the discovery of ferroptosis, it has been postulated that this type of cell death could be utilized in treatments for cancer. Unfortunately, several highly aggressive tumor models are resistant to the pharmacological induction of ferroptosis. However, with the use of combined therapies, it is possible to recover sensitivity to ferroptosis in certain cellular models. Here, we discovered that co-treatment with the metabolically stable ferroptosis inducer imidazole ketone erastin (IKE) and the oxidized form of vitamin C, dehydroascorbic acid (DHAA), is a powerful therapy that induces ferroptosis in tumor cells previously resistant to IKE-induced ferroptosis. We determined that DHAA and IKE + DHAA delocalize and deplete GPX4 in tumor cells, specifically inducing lipid droplet peroxidation, which leads to ferroptosis. Moreover, in vivo, IKE + DHAA has high efficacy with regard to the eradication of highly aggressive tumors such as glioblastomas. Thus, the use of IKE + DHAA could be an effective and safe therapy for the eradication of difficult-to-treat cancers.


Asunto(s)
Ferroptosis , Neoplasias , Humanos , Ácido Deshidroascórbico/farmacología , Gotas Lipídicas , Muerte Celular , Peroxidación de Lípido
17.
Nat Rev Drug Discov ; 22(9): 723-742, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37550363

RESUMEN

Cell death is critical for the development and homeostasis of almost all multicellular organisms. Moreover, its dysregulation leads to diverse disease states. Historically, apoptosis was thought to be the major regulated cell death pathway, whereas necrosis was considered to be an unregulated form of cell death. However, research in recent decades has uncovered several forms of regulated necrosis that are implicated in degenerative diseases, inflammatory conditions and cancer. The growing insight into these regulated, non-apoptotic cell death pathways has opened new avenues for therapeutic targeting. Here, we describe the regulatory pathways of necroptosis, pyroptosis, parthanatos, ferroptosis, cuproptosis, lysozincrosis and disulfidptosis. We discuss small-molecule inhibitors of the pathways and prospects for future drug discovery. Together, the complex mechanisms governing these pathways offer strategies to develop therapeutics that control non-apoptotic cell death.


Asunto(s)
Apoptosis , Neoplasias , Humanos , Muerte Celular , Necrosis , Piroptosis , Neoplasias/tratamiento farmacológico
18.
J Nat Prod ; 86(9): 2102-2110, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37643353

RESUMEN

High-grade serous ovarian cancer (HGSOC) is the most common and lethal ovarian cancer histotype. Lack of early detection methods, limited therapeutic agents, and low 5-year survival rate reflect the urgent need to develop new therapies. Eupenifeldin, a bistropolone, originally isolated from Eupenicillium brefeldianum, is a cytotoxic fungal metabolite. In three HSGOC cell lines (OVCAR3, OVCAR5, OVCAR8), eupenifeldin was found to have an IC50 value less than 10 nM, while 10 times higher concentrations were required for cytotoxicity in nontumorigenic fallopian tube secretory epithelial cell lines (FTSEC). An in vivo hollow fiber assay showed significant cytotoxicity in OVCAR3. Eupenifeldin significantly increased Annexin V staining in OVCAR3 and -8, but not OVCAR5. Eupenifeldin activated caspases 3/7 in OVCAR3, OVCAR5, and OVCAR8; however, cleaved PARP was only detected in OVCAR3. Quantitative proteomics performed on OVCAR3 implicated ferroptosis as the most enriched cell death pathway. However, validation experiments did not support ferroptosis as part of the cytotoxic mechanism of eupenifeldin. Autophagic flux and LC3B puncta assays found that eupenifeldin displayed weak autophagic induction in OVCAR3. Inhibition of autophagy by cotreatment with bafilomycin reduced the toxicity of eupenifeldin, supporting the idea that induction of autophagy contributes to the cytotoxic mechanism of eupenifeldin.


Asunto(s)
Antineoplásicos , Neoplasias Ováricas , Humanos , Femenino , Neoplasias Ováricas/tratamiento farmacológico , Apoptosis , Línea Celular Tumoral
19.
Cell Metab ; 35(8): 1474-1490.e8, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37467745

RESUMEN

Here, we identified vitamin K epoxide reductase complex subunit 1 like 1 (VKORC1L1) as a potent ferroptosis repressor. VKORC1L1 protects cells from ferroptosis by generating the reduced form of vitamin K, a potent radical-trapping antioxidant, to counteract phospholipid peroxides independent of the canonical GSH/GPX4 mechanism. Notably, we found that VKORC1L1 is also a direct transcriptional target of p53. Activation of p53 induces downregulation of VKORC1L1 expression, thus sensitizing cells to ferroptosis for tumor suppression. Interestingly, a small molecular inhibitor of VKORC1L1, warfarin, is widely prescribed as an FDA-approved anticoagulant drug. Moreover, warfarin represses tumor growth by promoting ferroptosis in both immunodeficient and immunocompetent mouse models. Thus, by downregulating VKORC1L1, p53 executes the tumor suppression function by activating an important ferroptosis pathway involved in vitamin K metabolism. Our study also reveals that warfarin is a potential repurposing drug in cancer therapy, particularly for tumors with high levels of VKORC1L1 expression.


Asunto(s)
Proteína p53 Supresora de Tumor , Warfarina , Animales , Ratones , Anticoagulantes/farmacología , Anticoagulantes/uso terapéutico , Vitamina K/metabolismo , Vitamina K Epóxido Reductasas/genética , Vitamina K Epóxido Reductasas/metabolismo , Warfarina/farmacología , Warfarina/uso terapéutico
20.
Nat Methods ; 20(8): 1174-1178, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37468619

RESUMEN

Multiplexed antibody-based imaging enables the detailed characterization of molecular and cellular organization in tissues. Advances in the field now allow high-parameter data collection (>60 targets); however, considerable expertise and capital are needed to construct the antibody panels employed by these methods. Organ mapping antibody panels are community-validated resources that save time and money, increase reproducibility, accelerate discovery and support the construction of a Human Reference Atlas.


Asunto(s)
Anticuerpos , Recursos Comunitarios , Humanos , Reproducibilidad de los Resultados , Diagnóstico por Imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...