Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
Microb Genom ; 10(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38713194

RESUMEN

Whole-genome reconstruction of bacterial pathogens has become an important tool for tracking transmission and antimicrobial resistance gene spread, but highly accurate and complete assemblies have largely only historically been achievable using hybrid long- and short-read sequencing. We previously found the Oxford Nanopore Technologies (ONT) R10.4/kit12 flowcell/chemistry produced improved assemblies over the R9.4.1/kit10 combination, however long-read only assemblies contained more errors compared to Illumina-ONT hybrid assemblies. ONT have since released an R10.4.1/kit14 flowcell/chemistry upgrade and recommended the use of Bovine Serum Albumin (BSA) during library preparation, both of which reportedly increase accuracy and yield. They have also released updated basecallers trained using native bacterial DNA containing methylation sites intended to fix systematic basecalling errors, including common adenosine (A) to guanine (G) and cytosine (C) to thymine (T) substitutions. To evaluate these improvements, we successfully sequenced four bacterial reference strains, namely Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Staphylococcus aureus, and nine genetically diverse E. coli bloodstream infection-associated isolates from different phylogroups and sequence types, both with and without BSA. These sequences were de novo assembled and compared against Illumina-corrected reference genomes. In this small evaluation of 13 isolates we found that nanopore long-read-only R10.4.1/kit 14 assemblies with updated basecallers trained using bacterial methylated DNA produce accurate assemblies with ≥40×depth, sufficient to be cost-effective compared with hybrid ONT/Illumina sequencing in our setting.


Asunto(s)
Genoma Bacteriano , Nanoporos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Escherichia coli/genética , Staphylococcus aureus/genética , Análisis de Secuencia de ADN/métodos , Pseudomonas aeruginosa/genética , Secuenciación de Nanoporos/métodos , ADN Bacteriano/genética , Klebsiella pneumoniae/genética , Secuenciación Completa del Genoma/métodos , Bacterias/genética , Bacterias/clasificación , Humanos
2.
J Infect ; 88(6): 106164, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38692359

RESUMEN

OBJECTIVES: We evaluated Nanopore sequencing for influenza surveillance. METHODS: Influenza A and B PCR-positive samples from hospital patients in Oxfordshire, UK, and a UK-wide population survey from winter 2022-23 underwent Nanopore sequencing following targeted rt-PCR amplification. RESULTS: From 941 infections, successful sequencing was achieved in 292/388 (75 %) available Oxfordshire samples: 231 (79 %) A/H3N2, 53 (18 %) A/H1N1, and 8 (3 %) B/Victoria and in 53/113 (47 %) UK-wide samples. Sequencing was more successful at lower Ct values. Most same-sample replicate sequences had identical haemagglutinin segments (124/141, 88 %); 36/39 (92 %) Illumina vs. Nanopore comparisons were identical, and 3 (8 %) differed by 1 variant. Comparison of Oxfordshire and UK-wide sequences showed frequent inter-regional transmission. Infections were closely-related to 2022-23 vaccine strains. Only one sample had a neuraminidase inhibitor resistance mutation. 849/941 (90 %) Oxfordshire infections were community-acquired. 63/88 (72 %) potentially healthcare-associated cases shared a hospital ward with ≥ 1 known infectious case. 33 epidemiologically-plausible transmission links had sequencing data for both source and recipient: 8 were within ≤ 5 SNPs, of these, 5 (63 %) involved potential sources that were also hospital-acquired. CONCLUSIONS: Nanopore influenza sequencing was reproducible and antiviral resistance rare. Inter-regional transmission was common; most infections were genomically similar. Hospital-acquired infections are likely an important source of nosocomial transmission and should be prioritised for infection prevention and control.


Asunto(s)
Virus de la Influenza B , Gripe Humana , Secuenciación de Nanoporos , Humanos , Gripe Humana/epidemiología , Gripe Humana/virología , Reino Unido/epidemiología , Secuenciación de Nanoporos/métodos , Virus de la Influenza B/genética , Virus de la Influenza B/aislamiento & purificación , Virus de la Influenza B/clasificación , Femenino , Masculino , Virus de la Influenza A/genética , Virus de la Influenza A/clasificación , Virus de la Influenza A/aislamiento & purificación , Adulto , Persona de Mediana Edad , Adolescente , Anciano , Adulto Joven , Niño , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/aislamiento & purificación , Subtipo H3N2 del Virus de la Influenza A/clasificación
4.
BMC Med ; 22(1): 143, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38532381

RESUMEN

BACKGROUND: Syndromic surveillance often relies on patients presenting to healthcare. Community cohorts, although more challenging to recruit, could provide additional population-wide insights, particularly with SARS-CoV-2 co-circulating with other respiratory viruses. METHODS: We estimated the positivity and incidence of SARS-CoV-2, influenza A/B, and RSV, and trends in self-reported symptoms including influenza-like illness (ILI), over the 2022/23 winter season in a broadly representative UK community cohort (COVID-19 Infection Survey), using negative-binomial generalised additive models. We estimated associations between test positivity and each of the symptoms and influenza vaccination, using adjusted logistic and multinomial models. RESULTS: Swabs taken at 32,937/1,352,979 (2.4%) assessments tested positive for SARS-CoV-2, 181/14,939 (1.2%) for RSV and 130/14,939 (0.9%) for influenza A/B, varying by age over time. Positivity and incidence peaks were earliest for RSV, then influenza A/B, then SARS-CoV-2, and were highest for RSV in the youngest and for SARS-CoV-2 in the oldest age groups. Many test positives did not report key symptoms: middle-aged participants were generally more symptomatic than older or younger participants, but still, only ~ 25% reported ILI-WHO and ~ 60% ILI-ECDC. Most symptomatic participants did not test positive for any of the three viruses. Influenza A/B-positivity was lower in participants reporting influenza vaccination in the current and previous seasons (odds ratio = 0.55 (95% CI 0.32, 0.95)) versus neither season. CONCLUSIONS: Symptom profiles varied little by aetiology, making distinguishing SARS-CoV-2, influenza and RSV using symptoms challenging. Most symptoms were not explained by these viruses, indicating the importance of other pathogens in syndromic surveillance. Influenza vaccination was associated with lower rates of community influenza test positivity.


Asunto(s)
COVID-19 , Gripe Humana , Infecciones por Virus Sincitial Respiratorio , Virosis , Persona de Mediana Edad , Humanos , Gripe Humana/epidemiología , SARS-CoV-2 , Estaciones del Año , Autoinforme , Virus Sincitiales Respiratorios , Reino Unido , Infecciones por Virus Sincitial Respiratorio/epidemiología
5.
Nat Commun ; 15(1): 1008, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38307854

RESUMEN

SARS-CoV-2 reinfections increased substantially after Omicron variants emerged. Large-scale community-based comparisons across multiple Omicron waves of reinfection characteristics, risk factors, and protection afforded by previous infection and vaccination, are limited. Here we studied ~45,000 reinfections from the UK's national COVID-19 Infection Survey and quantified the risk of reinfection in multiple waves, including those driven by BA.1, BA.2, BA.4/5, and BQ.1/CH.1.1/XBB.1.5 variants. Reinfections were associated with lower viral load and lower percentages of self-reporting symptoms compared with first infections. Across multiple Omicron waves, estimated protection against reinfection was significantly higher in those previously infected with more recent than earlier variants, even at the same time from previous infection. Estimated protection against Omicron reinfections decreased over time from the most recent infection if this was the previous or penultimate variant (generally within the preceding year). Those 14-180 days after receiving their most recent vaccination had a lower risk of reinfection than those >180 days from their most recent vaccination. Reinfection risk was independently higher in those aged 30-45 years, and with either low or high viral load in their most recent previous infection. Overall, the risk of Omicron reinfection is high, but with lower severity than first infections; both viral evolution and waning immunity are independently associated with reinfection.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , Reinfección/epidemiología , Reino Unido/epidemiología
6.
Nat Commun ; 15(1): 1612, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38383544

RESUMEN

Plasmids carry genes conferring antimicrobial resistance and other clinically important traits, and contribute to the rapid dissemination of such genes. Previous studies using complete plasmid assemblies, which are essential for reliable inference, have been small and/or limited to plasmids carrying antimicrobial resistance genes (ARGs). In this study, we sequenced 1,880 complete plasmids from 738 isolates from bloodstream infections in Oxfordshire, UK. The bacteria had been originally isolated in 2009 (194 isolates) and 2018 (368 isolates), plus a stratified selection from intervening years (176 isolates). We demonstrate that plasmids are largely, but not entirely, constrained to a single host species, although there is substantial overlap between species of plasmid gene-repertoire. Most ARGs are carried by a relatively small number of plasmid groups with biological features that are predictable. Plasmids carrying ARGs (including those encoding carbapenemases) share a putative 'backbone' of core genes with those carrying no such genes. These findings suggest that future surveillance should, in addition to tracking plasmids currently associated with clinically important genes, focus on identifying and monitoring the dissemination of high-risk plasmid groups with the potential to rapidly acquire and disseminate these genes.


Asunto(s)
Antibacterianos , Bacterias , Plásmidos/genética , Bacterias/genética
7.
JAC Antimicrob Resist ; 6(1): dlad156, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38204597

RESUMEN

Background: Recurrent urinary tract infection (rUTI) contributes to significant morbidity and antibiotic usage. Objectives: To characterize the age of women experiencing rUTI, the microbiology of rUTIs, and the risk of further rUTIs in Oxfordshire, UK. Patients and methods: We retrospectively analysed de-identified linked microbiology and hospital admissions data (Infections in Oxfordshire Research Database), between 2008 and 2019, including positive urine cultures from women aged ≥16 years in community settings. We defined rUTI as ≥2 positive urine cultures within 6 months or ≥3 within 12 months. Results: Of 201 927 women with urine culture performed, 84 809 (42%) had ≥1 positive culture, and 15 617 (18%) of these experienced ≥1 rUTI over a median (IQR) follow-up of 6 (3-9) years. Women with rUTI were 17.0 (95% CI: 16.3-17.7) years older on average. rUTI was commonest (6204; 40%) in those aged 70-89 years. Post-rUTI, the risk of further UTI within 6 months was 29.4% (95% CI: 28.7-30.2). Escherichia coli was detected in 65% of positive cultures. Among rUTIs where the index UTI was E. coli associated, the second UTI was also E. coli associated in 81% of cases. Conclusions: rUTIs represent a substantial healthcare burden, particularly in women >60 years. One-third of women experiencing rUTI have a further microbiologically confirmed UTI within 6 months.

8.
PLoS Biol ; 21(12): e3002433, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38091366

RESUMEN

The emerging and global spread of a novel plasmid-mediated colistin resistance gene, mcr-1, threatens human health. Expression of the MCR-1 protein affects bacterial fitness and this cost correlates with lipid A perturbation. However, the exact molecular mechanism remains unclear. Here, we identified the MCR-1 M6 variant carrying two-point mutations that conferred co-resistance to ß-lactam antibiotics. Compared to wild-type (WT) MCR-1, this variant caused severe disturbance in lipid A, resulting in up-regulation of L, D-transpeptidases (LDTs) pathway, which explains co-resistance to ß-lactams. Moreover, we show that a lipid A loading pocket is localized at the linker domain of MCR-1 where these 2 mutations are located. This pocket governs colistin resistance and bacterial membrane permeability, and the mutated pocket in M6 enhances the binding affinity towards lipid A. Based on this new information, we also designed synthetic peptides derived from M6 that exhibit broad-spectrum antimicrobial activity, exposing a potential vulnerability that could be exploited for future antimicrobial drug design.


Asunto(s)
Colistina , Proteínas de Escherichia coli , Humanos , Colistina/farmacología , Antibacterianos/farmacología , Antibióticos Betalactámicos , Lípido A , Péptidos Antimicrobianos , Monobactamas , Plásmidos , Farmacorresistencia Bacteriana/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Pruebas de Sensibilidad Microbiana
9.
BMC Med ; 21(1): 492, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-38087343

RESUMEN

BACKGROUND: Globally, detections of carbapenemase-producing Enterobacterales (CPE) colonisations and infections are increasing. The spread of these highly resistant bacteria poses a serious threat to public health. However, understanding of CPE transmission and evidence on effectiveness of control measures is severely lacking. This paper provides evidence to inform effective admission screening protocols, which could be important in controlling nosocomial CPE transmission. METHODS: CPE transmission within an English hospital setting was simulated with a data-driven individual-based mathematical model. This model was used to evaluate the ability of the 2016 England CPE screening recommendations, and of potential alternative protocols, to identify patients with CPE-colonisation on admission (including those colonised during previous stays or from elsewhere). The model included nosocomial transmission from colonised and infected patients, as well as environmental contamination. Model parameters were estimated using primary data where possible, including estimation of transmission using detailed epidemiological data within a Bayesian framework. Separate models were parameterised to represent hospitals in English areas with low and high CPE risk (based on prevalence). RESULTS: The proportion of truly colonised admissions which met the 2016 screening criteria was 43% in low-prevalence and 54% in high-prevalence areas respectively. Selection of CPE carriers for screening was improved in low-prevalence areas by adding readmission as a screening criterion, which doubled how many colonised admissions were selected. A minority of CPE carriers were confirmed as CPE positive during their hospital stay (10 and 14% in low- and high-prevalence areas); switching to a faster screening test pathway with a single-swab test (rather than three swab regimen) increased the overall positive predictive value with negligible reduction in negative predictive value. CONCLUSIONS: Using a novel within-hospital CPE transmission model, this study assesses CPE admission screening protocols, across the range of CPE prevalence observed in England. It identifies protocol changes-adding readmissions to screening criteria and a single-swab test pathway-which could detect similar numbers of CPE carriers (or twice as many in low CPE prevalence areas), but faster, and hence with lower demand on pre-emptive infection-control resources. Study findings can inform interventions to control this emerging threat, although further work is required to understand within-hospital transmission sources.


Asunto(s)
Enterobacteriaceae Resistentes a los Carbapenémicos , Infección Hospitalaria , Infecciones por Enterobacteriaceae , Humanos , Teorema de Bayes , Infecciones por Enterobacteriaceae/diagnóstico , Infecciones por Enterobacteriaceae/epidemiología , Proteínas Bacterianas , Hospitales , Infección Hospitalaria/diagnóstico , Infección Hospitalaria/epidemiología , Infección Hospitalaria/prevención & control
10.
Microb Genom ; 9(12)2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38100178

RESUMEN

Several bioinformatics genotyping algorithms are now commonly used to characterize antimicrobial resistance (AMR) gene profiles in whole-genome sequencing (WGS) data, with a view to understanding AMR epidemiology and developing resistance prediction workflows using WGS in clinical settings. Accurately evaluating AMR in Enterobacterales, particularly Escherichia coli, is of major importance, because this is a common pathogen. However, robust comparisons of different genotyping approaches on relevant simulated and large real-life WGS datasets are lacking. Here, we used both simulated datasets and a large set of real E. coli WGS data (n=1818 isolates) to systematically investigate genotyping methods in greater detail. Simulated constructs and real sequences were processed using four different bioinformatic programs (ABRicate, ARIBA, KmerResistance and SRST2, run with the ResFinder database) and their outputs compared. For simulation tests where 3079 AMR gene variants were inserted into random sequence constructs, KmerResistance was correct for 3076 (99.9 %) simulations, ABRicate for 3054 (99.2 %), ARIBA for 2783 (90.4 %) and SRST2 for 2108 (68.5 %). For simulation tests where two closely related gene variants were inserted into random sequence constructs, KmerResistance identified the correct alleles in 35 338/46 318 (76.3 %) simulations, ABRicate identified them in 11 842/46 318 (25.6 %) simulations, ARIBA identified them in 1679/46 318 (3.6 %) simulations and SRST2 identified them in 2000/46 318 (4.3 %) simulations. In real data, across all methods, 1392/1818 (76 %) isolates had discrepant allele calls for at least 1 gene. In addition to highlighting areas for improvement in challenging scenarios, (e.g. identification of AMR genes at <10× coverage, identifying multiple closely related AMR genes present in the same sample), our evaluations identified some more systematic errors that could be readily soluble, such as repeated misclassification (i.e. naming) of genes as shorter variants of the same gene present within the reference resistance gene database. Such naming errors accounted for at least 2530/4321 (59 %) of the discrepancies seen in real data. Moreover, many of the remaining discrepancies were likely 'artefactual', with reporting of cut-off differences accounting for at least 1430/4321 (33 %) discrepants. Whilst we found that comparing outputs generated by running multiple algorithms on the same dataset could identify and resolve these algorithmic artefacts, the results of our evaluations emphasize the need for developing new and more robust genotyping algorithms to further improve accuracy and performance.


Asunto(s)
Escherichia coli , Genómica , Escherichia coli/genética , Biología Computacional , Alelos , Algoritmos
11.
Commun Biol ; 6(1): 1164, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37964031

RESUMEN

The rise of antimicrobial resistance (AMR) is one of the greatest public health challenges, already causing up to 1.2 million deaths annually and rising. Current culture-based turnaround times for bacterial identification in clinical samples and antimicrobial susceptibility testing (AST) are typically 18-24 h. We present a novel proof-of-concept methodological advance in susceptibility testing based on the deep-learning of single-cell specific morphological phenotypes directly associated with antimicrobial susceptibility in Escherichia coli. Our models can reliably (80% single-cell accuracy) classify untreated and treated susceptible cells for a lab-reference fully susceptible E. coli strain, across four antibiotics (ciprofloxacin, gentamicin, rifampicin and co-amoxiclav). For ciprofloxacin, we demonstrate our models reveal significant (p < 0.001) differences between bacterial cell populations affected and unaffected by antibiotic treatment, and show that given treatment with a fixed concentration of 10 mg/L over 30 min these phenotypic effects correlate with clinical susceptibility defined by established clinical breakpoints. Deploying our approach on cell populations from six E. coli strains obtained from human bloodstream infections with varying degrees of ciprofloxacin resistance and treated with a range of ciprofloxacin concentrations, we show single-cell phenotyping has the potential to provide equivalent information to growth-based AST assays, but in as little as 30 min.


Asunto(s)
Aprendizaje Profundo , Infecciones por Escherichia coli , Humanos , Escherichia coli/genética , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Infecciones por Escherichia coli/tratamiento farmacológico , Ciprofloxacina/farmacología , Ciprofloxacina/uso terapéutico
13.
Microb Genom ; 9(9)2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37676707

RESUMEN

Respiratory viral infections are a major global clinical problem, and rapid, cheap, scalable and agnostic diagnostic tests that capture genome-level information on viral variation are urgently needed. Metagenomic approaches would be ideal, but remain currently limited in that much of the genetic content in respiratory samples is human, and amplifying and sequencing the viral/pathogen component in an unbiased manner is challenging. PCR-based tests, including those which detect multiple pathogens, are already widely used, but do not capture information on strain-level variation; tests with larger viral repertoires are also expensive on a per-test basis. One intermediate approach is the use of large panels of viral probes or 'baits', which target or 'capture' sequences representing complete genomes amongst several different common viral pathogens; these are then amplified, sequenced and analysed with a sequence analysis workflow. Here we evaluate one such commercial bait capture method (the Twist Bioscience Respiratory Virus Research Panel) and sequence analysis workflow (OneCodex), using control (simulated) and patient samples head-to-head with a validated multiplex PCR clinical diagnostic test (BioFire FilmArray). We highlight the limited sensitivity and specificity of the joint Twist Bioscience/OneCodex approach, which are further reduced by shortening workflow times and increasing sample throughput to reduce per-sample costs. These issues with performance may be driven by aspects of both the laboratory (e.g. capacity to enrich for viruses present in low numbers), bioinformatics methods used (e.g. a limited viral reference database) and thresholds adopted for calling a virus as present or absent. As a result, this workflow would require further optimization prior to any implementation for respiratory virus characterization in a routine diagnostic healthcare setting.


Asunto(s)
Biología Computacional , Hibridación Genética , Humanos , Flujo de Trabajo , Hibridación de Ácido Nucleico , Reacción en Cadena de la Polimerasa Multiplex
14.
Nat Commun ; 14(1): 2799, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37193713

RESUMEN

Following primary SARS-CoV-2 vaccination, whether boosters or breakthrough infections provide greater protection against SARS-CoV-2 infection is incompletely understood. Here we investigated SARS-CoV-2 antibody correlates of protection against new Omicron BA.4/5 (re-)infections and anti-spike IgG antibody trajectories after a third/booster vaccination or breakthrough infection following second vaccination in 154,149 adults ≥18 y from the United Kingdom general population. Higher antibody levels were associated with increased protection against Omicron BA.4/5 infection and breakthrough infections were associated with higher levels of protection at any given antibody level than boosters. Breakthrough infections generated similar antibody levels to boosters, and the subsequent antibody declines were slightly slower than after boosters. Together our findings show breakthrough infection provides longer-lasting protection against further infections than booster vaccinations. Our findings, considered alongside the risks of severe infection and long-term consequences of infection, have important implications for vaccine policy.


Asunto(s)
Infección Irruptiva , COVID-19 , Adulto , Humanos , COVID-19/prevención & control , Vacunas contra la COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , Reinfección , Reino Unido/epidemiología , Vacunación
15.
PLoS One ; 18(3): e0282584, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36928667

RESUMEN

Antimicrobial resistance (AMR) is a threat to global public health. However, unsatisfactory approaches to directly measuring the AMR burden carried by individuals has hampered efforts to assess interventions aimed at reducing selection for AMR. Metagenomics can provide accurate detection and quantification of AMR genes within an individual person's faecal flora (their gut "resistome"). Using this approach, we aimed to test the hypothesis that differences in antimicrobial use across different hospitals in the United Kingdom will result in observable differences in the resistome of individual patients. Three National Health Service acute Hospital Trusts with markedly different antibiotic use and Clostridioides difficile infection rates collected faecal samples from anonymous patients which were discarded after C. difficile testing over a period of 9 to 15 months. Metagenomic DNA was extracted from these samples and sequenced using an Illumina NovaSeq 6000 platform. The resulting sequencing reads were analysed for taxonomic composition and for the presence of AMR genes. Among 683 faecal metagenomes we found huge variation between individuals in terms of taxonomic diversity (Shannon Index range 0.10-3.99) and carriage of AMR genes (Median 1.50 genes/cell/sample overall). We found no statistically significant differences in diversity (median Shannon index 2.16 (IQR 1.71-2.56), 2.15 (IQR 1.62-2.50) and 2.26 (IQR 1.55-2.51)) or carriage of AMR genes (median 1.37 genes/cell/sample (IQR 0.70-3.24), 1.70 (IQR 0.70-4.52) and 1.43 (IQR 0.55-3.71)) at the three trusts respectively. This was also the case across the sample collection period within the trusts. While we have not demonstrated differences over place or time using metagenomic sequencing of faecal discards, other sampling frameworks may be more suitable to determine whether organisational level differences in antibiotic use are associated with individual-level differences in burden of AMR carriage.


Asunto(s)
Antiinfecciosos , Clostridioides difficile , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Metagenoma , Clostridioides difficile/genética , Medicina Estatal , Farmacorresistencia Bacteriana/genética , Antiinfecciosos/farmacología , Metagenómica/métodos
16.
Front Microbiol ; 14: 1070340, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36998408

RESUMEN

Introduction: There are concerns that antimicrobial usage (AMU) is driving an increase in multi-drug resistant (MDR) bacteria so treatment of microbial infections is becoming harder in humans and animals. The aim of this study was to evaluate factors, including usage, that affect antimicrobial resistance (AMR) on farm over time. Methods: A population of 14 cattle, sheep and pig farms within a defined area of England were sampled three times over a year to collect data on AMR in faecal Enterobacterales flora; AMU; and husbandry or management practices. Ten pooled samples were collected at each visit, with each comprising of 10 pinches of fresh faeces. Up to 14 isolates per visit were whole genome sequenced to determine presence of AMR genes. Results: Sheep farms had very low AMU in comparison to the other species and very few sheep isolates were genotypically resistant at any time point. AMR genes were detected persistently across pig farms at all visits, even on farms with low AMU, whereas AMR bacteria was consistently lower on cattle farms than pigs, even for those with comparably high AMU. MDR bacteria was also more commonly detected on pig farms than any other livestock species. Discussion: The results may be explained by a complex combination of factors on pig farms including historic AMU; co-selection of AMR bacteria; variation in amounts of antimicrobials used between visits; potential persistence in environmental reservoirs of AMR bacteria; or importation of pigs with AMR microbiota from supplying farms. Pig farms may also be at increased risk of AMR due to the greater use of oral routes of group antimicrobial treatment, which were less targeted than cattle treatments; the latter mostly administered to individual animals. Also, farms which exhibited either increasing or decreasing trends of AMR across the study did not have corresponding trends in their AMU. Therefore, our results suggest that factors other than AMU on individual farms are important for persistence of AMR bacteria on farms, which may be operating at the farm and livestock species level.

17.
Elife ; 122023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-36961866

RESUMEN

Plasmids enable the dissemination of antimicrobial resistance (AMR) in common Enterobacterales pathogens, representing a major public health challenge. However, the extent of plasmid sharing and evolution between Enterobacterales causing human infections and other niches remains unclear, including the emergence of resistance plasmids. Dense, unselected sampling is essential to developing our understanding of plasmid epidemiology and designing appropriate interventions to limit the emergence and dissemination of plasmid-associated AMR. We established a geographically and temporally restricted collection of human bloodstream infection (BSI)-associated, livestock-associated (cattle, pig, poultry, and sheep faeces, farm soils) and wastewater treatment work (WwTW)-associated (influent, effluent, waterways upstream/downstream of effluent outlets) Enterobacterales. Isolates were collected between 2008 and 2020 from sites <60 km apart in Oxfordshire, UK. Pangenome analysis of plasmid clusters revealed shared 'backbones', with phylogenies suggesting an intertwined ecology where well-conserved plasmid backbones carry diverse accessory functions, including AMR genes. Many plasmid 'backbones' were seen across species and niches, raising the possibility that plasmid movement between these followed by rapid accessory gene change could be relatively common. Overall, the signature of identical plasmid sharing is likely to be a highly transient one, implying that plasmid movement might be occurring at greater rates than previously estimated, raising a challenge for future genomic One Health studies.


Asunto(s)
Gammaproteobacteria , Sepsis , Humanos , Animales , Bovinos , Porcinos , Ovinos/genética , Escherichia coli/genética , Ganado/genética , Aguas Residuales , Plásmidos/genética , Klebsiella pneumoniae/genética , Reino Unido , Antibacterianos , beta-Lactamasas/genética , Pruebas de Sensibilidad Microbiana
18.
Microb Genom ; 9(1)2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36748454

RESUMEN

Complete, accurate, cost-effective, and high-throughput reconstruction of bacterial genomes for large-scale genomic epidemiological studies is currently only possible with hybrid assembly, combining long- (typically using nanopore sequencing) and short-read (Illumina) datasets. Being able to use nanopore-only data would be a significant advance. Oxford Nanopore Technologies (ONT) have recently released a new flowcell (R10.4) and chemistry (Kit12), which reportedly generate per-read accuracies rivalling those of Illumina data. To evaluate this, we sequenced DNA extracts from four commonly studied bacterial pathogens, namely Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Staphylococcus aureus, using Illumina and ONT's R9.4.1/Kit10, R10.3/Kit12, R10.4/Kit12 flowcells/chemistries. We compared raw read accuracy and assembly accuracy for each modality, considering the impact of different nanopore basecalling models, commonly used assemblers, sequencing depth, and the use of duplex versus simplex reads. 'Super accuracy' (sup) basecalled R10.4 reads - in particular duplex reads - have high per-read accuracies and could be used to robustly reconstruct bacterial genomes without the use of Illumina data. However, the per-run yield of duplex reads generated in our hands with standard sequencing protocols was low (typically <10 %), with substantial implications for cost and throughput if relying on nanopore data only to enable bacterial genome reconstruction. In addition, recovery of small plasmids with the best-performing long-read assembler (Flye) was inconsistent. R10.4/Kit12 combined with sup basecalling holds promise as a singular sequencing technology in the reconstruction of commonly studied bacterial genomes, but hybrid assembly (Illumina+R9.4.1 hac) currently remains the highest throughput, most robust, and cost-effective approach to fully reconstruct these bacterial genomes.


Asunto(s)
Nanoporos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Genómica/métodos , Análisis de Secuencia de ADN/métodos , Genoma Bacteriano/genética
19.
Sci Rep ; 13(1): 2500, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36781908

RESUMEN

Plasmids are major vectors of bacterial antibiotic resistance, but understanding of factors associated with plasmid antibiotic resistance gene (ARG) carriage is limited. We curated > 14,000 publicly available plasmid genomes and associated metadata. Duplicate and replicate plasmids were excluded; where possible, sample metadata was validated externally (BacDive database). Using Generalised Additive Models (GAMs) we assessed the influence of 12 biotic/abiotic factors (e.g. plasmid genetic factors, isolation source, collection date) on ARG carriage, modelled as a binary outcome. Separate GAMs were built for 10 major ARG types. Multivariable analysis indicated that plasmid ARG carriage patterns across time (collection years), isolation sources (human/livestock) and host bacterial taxa were consistent with antibiotic selection pressure as a driver of plasmid-mediated antibiotic resistance. Only 0.42% livestock plasmids carried carbapenem resistance (compared with 12% human plasmids); conversely, tetracycline resistance was enriched in livestock vs human plasmids, reflecting known prescribing practices. Interpreting results using a timeline of ARG type acquisition (determined by literature review) yielded additional novel insights. More recently acquired ARG types (e.g. colistin and carbapenem) showed increases in plasmid carriage during the date range analysed (1994-2019), potentially reflecting recent onset of selection pressure; they also co-occurred less commonly with ARGs of other types, and virulence genes. Overall, this suggests that following acquisition, plasmid ARGs tend to accumulate under antibiotic selection pressure and co-associate with other adaptive genes (other ARG types, virulence genes), potentially re-enforcing plasmid ARG carriage through co-selection.


Asunto(s)
Antibacterianos , Bacterias , Humanos , Antibacterianos/farmacología , Plásmidos/genética , Bacterias/genética , Farmacorresistencia Bacteriana/genética , Carbapenémicos
20.
ACS Nano ; 17(1): 697-710, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36541630

RESUMEN

The increasing frequency and magnitude of viral outbreaks in recent decades, epitomized by the COVID-19 pandemic, has resulted in an urgent need for rapid and sensitive diagnostic methods. Here, we present a methodology for virus detection and identification that uses a convolutional neural network to distinguish between microscopy images of fluorescently labeled intact particles of different viruses. Our assay achieves labeling, imaging, and virus identification in less than 5 min and does not require any lysis, purification, or amplification steps. The trained neural network was able to differentiate SARS-CoV-2 from negative clinical samples, as well as from other common respiratory pathogens such as influenza and seasonal human coronaviruses. We were also able to differentiate closely related strains of influenza, as well as SARS-CoV-2 variants. Additional and novel pathogens can easily be incorporated into the test through software updates, offering the potential to rapidly utilize the technology in future infectious disease outbreaks or pandemics. Single-particle imaging combined with deep learning therefore offers a promising alternative to traditional viral diagnostic and genomic sequencing methods and has the potential for significant impact.


Asunto(s)
COVID-19 , Aprendizaje Profundo , Gripe Humana , Humanos , SARS-CoV-2 , COVID-19/diagnóstico por imagen , Pandemias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...