Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Genome Biol Evol ; 13(8)2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34247248

RESUMEN

Despite the progress made in DNA sequencing over the last decade, reconstructing telomere-to-telomere genome assemblies of large and repeat-rich eukaryotic genomes is still difficult. More accurate basecalls or longer reads could address this issue, but no current sequencing platform can provide both simultaneously. Perennial ryegrass (Lolium perenne L.) is an example of an important species for which the lack of a reference genome assembly hindered a swift adoption of genomics-based methods into breeding programs. To fill this gap, we optimized the Oxford Nanopore Technologies' sequencing protocol, obtaining sequencing reads with an N50 of 62 kb-a very high value for a plant sample. The assembly of such reads produced a highly complete (2.3 of 2.7 Gb), correct (QV 45), and contiguous (contig N50 and N90 11.74 and 3.34 Mb, respectively) genome assembly. We show how read length was key in determining the assembly contiguity. Sequence annotation revealed the dominance of transposable elements and repeated sequences (81.6% of the assembly) and identified 38,868 protein coding genes. Almost 90% of the bases could be anchored to seven pseudomolecules, providing the first high-quality haploid reference assembly for perennial ryegrass. This protocol will enable producing longer Oxford Nanopore Technology reads for more plant samples and ushering forage grasses into modern genomics-assisted breeding programs.


Asunto(s)
Lolium , Nanoporos , Elementos Transponibles de ADN/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Lolium/genética , Fitomejoramiento , Análisis de Secuencia de ADN/métodos
3.
Elife ; 5: e13841, 2016 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-27008177

RESUMEN

Cullin-3 (CUL3)-based ubiquitin ligases regulate endosome maturation and trafficking of endocytic cargo to lysosomes in mammalian cells. Here, we report that these functions depend on SPOPL, a substrate-specific CUL3 adaptor. We find that SPOPL associates with endosomes and is required for both the formation of multivesicular bodies (MVBs) and the endocytic host cell entry of influenza A virus. In SPOPL-depleted cells, endosomes are enlarged and fail to acquire intraluminal vesicles (ILVs). We identify a critical substrate ubiquitinated by CUL3-SPOPL as EPS15, an endocytic adaptor that also associates with the ESCRT-0 complex members HRS and STAM on endosomes. Indeed, EPS15 is ubiquitinated in a SPOPL-dependent manner, and accumulates with HRS in cells lacking SPOPL. Together, our data indicates that a CUL3-SPOPL E3 ubiquitin ligase complex regulates endocytic trafficking and MVB formation by ubiquitinating and degrading EPS15 at endosomes, thereby influencing influenza A virus infection as well as degradation of EGFR and other EPS15 targets.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas Cullin/metabolismo , Endocitosis , Endosomas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Transporte Biológico , Línea Celular , Humanos , Virus de la Influenza A/fisiología , Internalización del Virus
4.
Dev Cell ; 35(4): 458-70, 2015 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-26585298

RESUMEN

Directional cell growth requires that cells read and interpret shallow chemical gradients, but how the gradient directional information is identified remains elusive. We use single-cell analysis and mathematical modeling to define the cellular gradient decoding network in yeast. Our results demonstrate that the spatial information of the gradient signal is read locally within the polarity site complex using double-positive feedback between the GTPase Cdc42 and trafficking of the receptor Ste2. Spatial decoding critically depends on low Cdc42 activity, which is maintained by the MAPK Fus3 through sequestration of the Cdc42 activator Cdc24. Deregulated Cdc42 or Ste2 trafficking prevents gradient decoding and leads to mis-oriented growth. Our work discovers how a conserved set of components assembles a network integrating signal intensity and directionality to decode the spatial information contained in chemical gradients.


Asunto(s)
Polaridad Celular/fisiología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Receptores del Factor de Conjugación/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Proteína de Unión al GTP cdc42 de Saccharomyces cerevisiae/metabolismo , Quimiotaxis , Procesamiento de Imagen Asistido por Computador , Immunoblotting , Técnicas Analíticas Microfluídicas , Proteínas Quinasas Activadas por Mitógenos/genética , Modelos Teóricos , Unión Proteica , Transporte de Proteínas , Receptores del Factor de Conjugación/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Análisis de la Célula Individual/métodos , Proteína de Unión al GTP cdc42 de Saccharomyces cerevisiae/genética
5.
Genetics ; 199(2): 475-85, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25519895

RESUMEN

Autophagy is a highly regulated pathway that selectively degrades cellular constituents such as protein aggregates and excessive or damaged organelles. This transport route is characterized by engulfment of the targeted cargo by autophagosomes. The formation of these double-membrane vesicles requires the covalent conjugation of the ubiquitin-like protein Atg8 to phosphatidylethanolamine (PE). However, the origin of PE and the regulation of lipid flux required for autophagy remain poorly understood. Using a genetic screen, we found that the temperature-sensitive growth and intracellular membrane organization defects of mcd4-174 and mcd4-P301L mutants are suppressed by deletion of essential autophagy genes such as ATG1 or ATG7. MCD4 encodes an ethanolamine phosphate transferase that uses PE as a precursor for an essential step in the synthesis of the glycosylphosphatidylinositol (GPI) anchor used to link a subset of plasma membrane proteins to lipid bilayers. Similar to the deletion of CHO2, a gene encoding the enzyme converting PE to phosphatidylcholine (PC), deletion of ATG7 was able to restore lipidation and plasma membrane localization of the GPI-anchored protein Gas1 and normal organization of intracellular membranes. Conversely, overexpression of Cho2 was lethal in mcd4-174 cells grown at restrictive temperature. Quantitative lipid analysis revealed that PE levels are substantially reduced in the mcd4-174 mutant but can be restored by deletion of ATG7 or CHO2. Taken together, these data suggest that autophagy competes for a common PE pool with major cellular PE-consuming pathways such as the GPI anchor and PC synthesis, highlighting the possible interplay between these pathways and the existence of signals that may coordinate PE flux.


Asunto(s)
Autofagia/genética , Redes y Vías Metabólicas , Fosfatidiletanolaminas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Etanolaminas/metabolismo , Eliminación de Gen , Expresión Génica , Perfilación de la Expresión Génica , Genes Esenciales , Mutación , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal
6.
Genome Res ; 17(12): 1774-82, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17989249

RESUMEN

Comprehensive approaches to detect protein-protein interactions (PPIs) have been most successful in the yeast model system. Here we present "Cross-and-Capture," a novel assay for rapid, sensitive assessment of PPIs via pulldown of differently tagged yeast strain arrays. About 500 yeast genes that function in DNA replication, repair, and recombination and nuclear proteins of unknown function were chromosomally tagged with six histidine residues or triple VSV epitopes. We demonstrate that the assay can interrogate a wide range of previously known protein complexes with increased resolution and sensitivity. Furthermore, we use "Cross-and-Capture" to identify two novel protein complexes: Rtt101p-Mms1p and Sae2p-Mre11p. The Rtt101p-Mms1p interaction was subsequently characterized by genetic and functional analyses. Our studies establish the "Cross-and-Capture" assay as a novel, versatile tool that provides a valuable complement for the next generation of yeast proteomic studies.


Asunto(s)
Mapeo de Interacción de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Análisis de Matrices Tisulares , Técnicas del Sistema de Dos Híbridos , Mapeo de Interacción de Proteínas/métodos , Proteómica/métodos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Lugares Marcados de Secuencia , Análisis de Matrices Tisulares/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...