Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMJ Open ; 14(5): e081139, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38772887

RESUMEN

OBJECTIVES: Healthcare grapples with staff shortages and rising burnout rates for medical students, residents and specialists. To prioritise both their well-being and the delivery of high-quality patient care, it becomes imperative to deepen our understanding of physicians' developmental aims and needs. Our first aim is, therefore, to gain comprehensive insights into the specific developmental aims physicians prioritise by examining the coaching goals they set at the beginning of coaching. Since physicians face distinct roles as they advance in their careers, our second aim is to highlight similarities and differences in developmental aims and needs among individuals at various medical career stages. DESIGN: We conducted a qualitative analysis of 2571 coaching goals. We performed an inductive thematic analysis to code one-half of coaching goals and a codebook thematic analysis for the other half. Our interpretation of the findings was grounded in a critical realist approach. SETTING: Sixteen hospitals in the Netherlands. PARTICIPANTS: A total of 341 medical clerkship students, 336 medical residents, 122 early-career specialists, 82 mid-career specialists and 57 late-career specialists provided their coaching goals at the start of coaching. RESULTS: The findings revealed that coachees commonly set goals about their career and future, current job and tasks, interpersonal work relations, self-insight and development, health and well-being, nonwork aspects and the coaching process. Furthermore, the findings illustrate how the diversity of coaching goals increases as physicians advance in their careers. CONCLUSIONS: Our findings underscore the significance of recognising distinct challenges at various career stages and the necessity for tailoring holistic support for physicians. This insight holds great relevance for healthcare organisations, enabling them to better align system interventions with physicians' needs and enhance support. Moreover, our classification of coaching goals serves as a valuable foundation for future research, facilitating a deeper exploration of how these goals influence coaching outcomes.


Asunto(s)
Objetivos , Tutoría , Estudiantes de Medicina , Humanos , Femenino , Países Bajos , Masculino , Estudiantes de Medicina/psicología , Investigación Cualitativa , Médicos/psicología , Adulto , Internado y Residencia , Selección de Profesión , Especialización , Agotamiento Profesional/prevención & control
2.
Eur J Immunol ; : e2250342, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38593338

RESUMEN

Natural killer (NK) cells are innate cytotoxic lymphocytes that contribute to immune responses against stressed, transformed, or infected cells. NK cell effector functions are regulated by microenvironmental factors, including cytokines, metabolites, and nutrients. Vitamin A is an essential micronutrient that plays an indispensable role in embryogenesis and development, but was also reported to regulate immune responses. However, the role of vitamin A in regulating NK cell functions remains poorly understood. Here, we show that the most prevalent vitamin A metabolite, all-trans retinoic acid (atRA), induces transcriptional and functional changes in NK cells leading to altered metabolism and reduced IFN-γ production in response to a wide range of stimuli. atRA-exposed NK cells display a reduced ability to support dendritic cell (DC) maturation and to eliminate immature DCs. Moreover, they support the polarization and proliferation of regulatory T cells. These results imply that in vitamin A-enriched environments, NK cells can acquire functions that might promote tolerogenic immunity and/or immunosuppression.

3.
Pharmaceuticals (Basel) ; 16(8)2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37631044

RESUMEN

Herb-induced liver injury (HILI) caused by herbal supplements, natural products, and products used in traditional medicine are important for differential diagnoses in patients with acute liver injury without an obvious etiology. The root of Withania somnifera (L.) Dunal, commonly known as ashwagandha, has been used in Ayurvedic medicine for thousands of years to promote health and longevity. Due to various biological activities, ashwagandha and its extracts became widespread as herbal supplements on the global market. Although it is generally considered safe, there are several reported cases of ashwagandha-related liver injury, and one case ended with liver transplantation. In this paper, we review all reported cases so far. Additionally, we describe two new cases of ashwagandha hepatotoxicity. In the first case, a 36-year-old man used ashwagandha capsules (450 mg, three times daily) for 6 months before he developed nausea, pruritus, and dark-colored urine. In the second case, a 30-year-old woman developed pruritus after 45 days of using ashwagandha capsules (450 mg). In both cases, serum bilirubin and liver enzymes (aspartate transaminase (AST), alanine transaminase (ALT), and alkaline phosphatase (ALP) were increased. The liver injury pattern was hepatocellular (R-value 11.1) and mixed (R-value 2.6), respectively. The updated Roussel Uclaf Causality Assessment Method (RUCAM) (both cases with a score of seven) indicated a "probable" relationship with ashwagandha. Clinical and liver function improvements were observed after the discontinuation of ashwagandha supplement use. By increasing the data related to ashwagandha-induced liver injury, these reports support that consuming ashwagandha supplements is not without its safety concerns.

4.
Cell Rep ; 42(8): 112836, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37471222

RESUMEN

Liver sinusoidal endothelial cells (LSECs) rapidly clear lipopolysaccharide (LPS) from the bloodstream and establish intimate contact with immune cells. However, their role in regulating liver inflammation remains poorly understood. We show that LSECs modify their chemokine expression profile driven by LPS or interferon-γ (IFN-γ), resulting in the production of the myeloid- or lymphoid-attracting chemokines CCL2 and CXCL10, respectively, which accumulate in the serum of LPS-challenged animals. Natural killer (NK) cell exposure to LSECs in vitro primes NK cells for higher production of IFN-γ in response to interleukin-12 (IL-12) and IL-18. In livers of LPS-injected mice, NK cells are the major producers of this cytokine. In turn, LSECs require exposure to IFN-γ for CXCL10 expression, and endothelial-specific Cxcl10 gene deletion curtails NK cell accumulation in the inflamed livers. Thus, LSECs respond to both LPS and immune-derived signals and fuel a positive feedback loop of immune cell attraction and activation in the inflamed liver tissue.


Asunto(s)
Células Endoteliales , Lipopolisacáridos , Ratones , Animales , Células Endoteliales/metabolismo , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Células Asesinas Naturales , Hígado/metabolismo , Interferón gamma/metabolismo , Ratones Endogámicos C57BL
6.
Cancer Cell Int ; 22(1): 398, 2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36496412

RESUMEN

BACKGROUND: Hyaluronan receptor LYVE-1 is expressed by liver sinusoidal endothelial cells (LSEC), lymphatic endothelial cells and specialized macrophages. Besides binding to hyaluronan, LYVE-1 can mediate adhesion of leukocytes and cancer cells to endothelial cells. Here, we assessed the impact of LYVE-1 on physiological liver functions and metastasis. METHODS: Mice with deficiency of Lyve-1 (Lyve-1-KO) were analyzed using histology, immunofluorescence, microarray analysis, plasma proteomics and flow cytometry. Liver metastasis was studied by intrasplenic/intravenous injection of melanoma (B16F10 luc2, WT31) or colorectal carcinoma (MC38). RESULTS: Hepatic architecture, liver size, endothelial differentiation and angiocrine functions were unaltered in Lyve-1-KO. Hyaluronan plasma levels were significantly increased in Lyve-1-KO. Besides, plasma proteomics revealed increased carbonic anhydrase-2 and decreased FXIIIA. Furthermore, gene expression analysis of LSEC indicated regulation of immunological pathways. Therefore, liver metastasis of highly and weakly immunogenic tumors, i.e. melanoma and colorectal carcinoma (CRC), was analyzed. Hepatic metastasis of B16F10 luc2 and WT31 melanoma cells, but not MC38 CRC cells, was significantly reduced in Lyve-1-KO mice. In vivo retention assays with B16F10 luc2 cells were unaltered between Lyve-1-KO and control mice. However, in tumor-free Lyve-1-KO livers numbers of hepatic CD4+, CD8+ and regulatory T cells were increased. In addition, iron deposition was found in F4/80+ liver macrophages known to exert pro-inflammatory effects. CONCLUSION: Lyve-1 deficiency controlled hepatic metastasis in a tumor cell-specific manner leading to reduced growth of hepatic metastases of melanoma, but not CRC. Anti-tumorigenic effects are likely due to enhancement of the premetastatic hepatic immune microenvironment influencing early liver metastasis formation.

7.
Circulation ; 146(23): 1783-1799, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36325910

RESUMEN

BACKGROUND: Scavenger receptors Stabilin-1 (Stab1) and Stabilin-2 (Stab2) are preferentially expressed by liver sinusoidal endothelial cells. They mediate the clearance of circulating plasma molecules controlling distant organ homeostasis. Studies suggest that Stab1 and Stab2 may affect atherosclerosis. Although subsets of tissue macrophages also express Stab1, hematopoietic Stab1 deficiency does not modulate atherogenesis. Here, we comprehensively studied how targeting Stab1 and Stab2 affects atherosclerosis. METHODS: ApoE-KO mice were interbred with Stab1-KO and Stab2-KO mice and fed a Western diet. For antibody targeting, Ldlr-KO mice were also used. Unbiased plasma proteomics were performed and independently confirmed. Ligand binding studies comprised glutathione-S-transferase-pulldown and endocytosis assays. Plasma proteome effects on monocytes were studied by single-cell RNA sequencing in vivo, and by gene expression analyses of Stabilin ligand-stimulated and plasma-stimulated bone marrow-derived monocytes/macrophages in vitro. RESULTS: Spontaneous and Western diet-associated atherogenesis was significantly reduced in ApoE-Stab1-KO and ApoE-Stab2-KO mice. Similarly, inhibition of Stab1 or Stab2 by monoclonal antibodies significantly reduced Western diet-associated atherosclerosis in ApoE-KO and Ldlr-KO mice. Although neither plasma lipid levels nor circulating immune cell numbers were decisively altered, plasma proteomics revealed a switch in the plasma proteome, consisting of 231 dysregulated proteins comparing wildtype with Stab1/2-single and Stab1/2-double KO, and of 41 proteins comparing ApoE-, ApoE-Stab1-, and ApoE-Stab2-KO. Among this broad spectrum of common, but also disparate scavenger receptor ligand candidates, periostin, reelin, and TGFBi (transforming growth factor, ß-induced), known to modulate atherosclerosis, were independently confirmed as novel circulating ligands of Stab1/2. Single-cell RNA sequencing of circulating myeloid cells of ApoE-, ApoE-Stab1-, and ApoE-Stab2-KO mice showed transcriptomic alterations in patrolling (Ccr2-/Cx3cr1++/Ly6Clo) and inflammatory (Ccr2+/Cx3cr1+/Ly6Chi) monocytes, including downregulation of proatherogenic transcription factor Egr1. In wildtype bone marrow-derived monocytes/macrophages, ligand exposure alone did not alter Egr1 expression in vitro. However, exposure to plasma from ApoE-Stab1-KO and ApoE-Stab2-KO mice showed a reverted proatherogenic macrophage activation compared with ApoE-KO plasma, including downregulation of Egr1 in vitro. CONCLUSIONS: Inhibition of Stab1/Stab2 mediates an anti-inflammatory switch in the plasma proteome, including direct Stabilin ligands. The altered plasma proteome suppresses both patrolling and inflammatory monocytes and, thus, systemically protects against atherogenesis. Altogether, anti-Stab1- and anti-Stab2-targeted therapies provide a novel approach for the future treatment of atherosclerosis.


Asunto(s)
Aterosclerosis , Monocitos , Animales , Ratones , Aterosclerosis/genética , Aterosclerosis/prevención & control , Aterosclerosis/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Células Endoteliales/metabolismo , Ligandos , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Monocitos/metabolismo , Proteoma , Receptores Depuradores/metabolismo , Ratones Noqueados para ApoE
8.
EMBO Mol Med ; 14(6): e14121, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35491615

RESUMEN

The gut has a specific vascular barrier that controls trafficking of antigens and microbiota into the bloodstream. However, the molecular mechanisms regulating the maintenance of this vascular barrier remain elusive. Here, we identified Caspase-8 as a pro-survival factor in mature intestinal endothelial cells that is required to actively maintain vascular homeostasis in the small intestine in an organ-specific manner. In particular, we find that deletion of Caspase-8 in endothelial cells results in small intestinal hemorrhages and bowel inflammation, while all other organs remained unaffected. We also show that Caspase-8 seems to be particularly needed in lymphatic endothelial cells to maintain gut homeostasis. Our work demonstrates that endothelial cell dysfunction, leading to the breakdown of the gut-vascular barrier, is an active driver of chronic small intestinal inflammation, highlighting the role of the intestinal vasculature as a safeguard of organ function.


Asunto(s)
Caspasa 8 , Células Endoteliales , Mucosa Intestinal , Animales , Caspasa 8/metabolismo , Células Endoteliales/enzimología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Enteritis/enzimología , Enteritis/patología , Homeostasis , Mucosa Intestinal/enzimología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Intestino Delgado/enzimología , Intestino Delgado/patología , Ratones
9.
Front Immunol ; 13: 742571, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35300331

RESUMEN

Group 3 helper Innate Lymphoid Cells (ILC3s) are cytokine-producing lymphocytes that respond to stress signals released during disturbed tissue homeostasis and infection. Upon activation, ILC3s secrete IL-22 and IL-17, and orchestrate immune responses against extracellular pathogens. Their role in cancer remains poorly explored. To determine their anti-cancer effector potential, we co-cultured cytokine-activated human ILC3s with cancer cells of different origins. ILC3s were able to directly respond to tumor cells, resulting in enhanced IFN-γ production. Upon tumor cell encounter, ILC3s maintained expression of the transcription factor RORγt, indicating that ILC3s preserved their identity. ILC3s were able to directly kill both hepatocellular carcinoma and melanoma tumor cells expressing cell-death receptor TRAILR2, through the activation of Caspase-8 in target cells. Moreover, liver-derived cytokine-activated ILC3s also expressed TRAIL and were able to eliminate hepatoblastoma cells. Together, our data reveal that ILC3s can participate in anti-tumor immune response through direct recognition of tumor cells resulting in IFN-γ release and TRAIL-dependent cytotoxicity. Thus, ILC3s might be ancillary players of anti-tumor immunity in tissues, acting as primary responders against transformed or metastasizing cells, which might be further exploited for therapies against cancer.


Asunto(s)
Linfocitos , Neoplasias , Citocinas , Regulación de la Expresión Génica , Humanos , Inmunidad Innata , Interferón gamma , Ligando Inductor de Apoptosis Relacionado con TNF
10.
Immunity ; 54(10): 2185-2187, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34644553

RESUMEN

Both innate and adaptive immunity are orchestrated by multiple cell types, specialized cell lineages, and their spatiotemporal encounters. It is thought that adaptive-like NK cell responses to viral infection mainly involve circulating bona fide NK cells. In this issue of Immunity, Flommersfeld et al. (2021) identify a splenic-resident ILC1-like NK cell subset that facilitates CD8+ T cell-DC interactions during anti-viral defense.


Asunto(s)
Células Asesinas Naturales , Virosis , Inmunidad Adaptativa , Comunicación Celular , Linaje de la Célula , Humanos
11.
Cancer Cell ; 39(9): 1181-1183, 2021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34450048

RESUMEN

Discrete tissue niches are emerging as essential prerequisites enabling cell communication and function in both homeostasis and disease. In a recent Cell paper, Di Pilato et al. identify a unique dendritic cell-cytotoxic T cell crosstalk within the perivascular space that facilitates T cell survival and proliferation and drives anti-tumor activity.


Asunto(s)
Células Dendríticas , Neoplasias , Comunicación Celular , Humanos , Neoplasias/genética , Linfocitos T Citotóxicos
12.
Oxid Med Cell Longev ; 2021: 6654388, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34257816

RESUMEN

INTRODUCTION: Risk stratification is an important aspect of COVID-19 management, especially in patients admitted to ICU as it can provide more useful consumption of health resources, as well as prioritize critical care services in situations of overwhelming number of patients. MATERIALS AND METHODS: A multivariable predictive model for mortality was developed using data solely from a derivation cohort of 160 COVID-19 patients with moderate to severe ARDS admitted to ICU. The regression coefficients from the final multivariate model of the derivation study were used to assign points for the risk model, consisted of all significant variables from the multivariate analysis and age as a known risk factor for COVID-19 patient mortality. The newly developed AIDA score was arrived at by assigning 5 points for serum albumin and 1 point for IL-6, D dimer, and age. The score was further validated on a cohort of 304 patients admitted to ICU due to the severe form of COVID-19. RESULTS: The study population included 160 COVID-19 patients admitted to ICU in the derivation and 304 in the validation cohort. The mean patient age was 66.7 years (range, 20-93 years), with 68.1% men and 31.9% women. Most patients (76.8%) had comorbidities with hypertension (67.7%), diabetes (31.7), and coronary artery disease (19.3) as the most frequent. A total of 316 patients (68.3%) were treated with mechanical ventilation. Ninety-six (60.0%) in the derivation cohort and 221 (72.7%) patients in the validation cohort had a lethal outcome. The population was divided into the following risk categories for mortality based on the risk model score: low risk (score 0-1) and at-risk (score > 1). In addition, patients were considered at high risk with a risk score > 2. By applying the risk model to the validation cohort (n = 304), the positive predictive value was 78.8% (95% CI 75.5% to 81.8%); the negative predictive value was 46.6% (95% CI 37.3% to 56.2%); the sensitivity was 82.4% (95% CI 76.7% to 87.1%), and the specificity was 41.0% (95% CI 30.3% to 52.3%). The C statistic was 0.863 (95% CI 0.805-0.921) and 0.665 (95% CI 0.598-0.732) in the derivation and validation cohorts, respectively, indicating a high discriminative value of the proposed score. CONCLUSION: In the present study, AIDA score showed a valuable significance in estimating the mortality risk in patients with the severe form of COVID-19 disease at admission to ICU. Further external validation on a larger group of patients is needed to provide more insights into the utility of this score in everyday practice.


Asunto(s)
COVID-19 , Hospitalización , Unidades de Cuidados Intensivos , Modelos Biológicos , Oxígeno , Respiración Artificial , SARS-CoV-2/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/sangre , COVID-19/mortalidad , COVID-19/terapia , Femenino , Humanos , Masculino , Persona de Mediana Edad , Oxígeno/administración & dosificación , Oxígeno/sangre , Medición de Riesgo
13.
Oncoimmunology ; 10(1): 1973783, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35036073

RESUMEN

Intratumoral heterogeneity is frequently associated with tumor immune escape, with MHC-class I and antigen expression loss rendering tumor cells invisible to T cell killing, representing a major challenge for the design of successful adoptive transfer protocols for cancer immunotherapy. While CD8+ T cell recognition of tumor cells is based on the detection of MHC-peptide complexes via specific T cell receptors (TCRs), Natural Killer (NK) cells detect tumor-associated NK ligands by an array of NK receptors. We have recently identified a population of innate-like CD8+ T cells marked by the expression of NKp30, a potent natural cytotoxicity activating NK receptor, whose tumor ligand, B7H6, is frequently upregulated on several cancer types. Here, we harnessed the dual-recognition potential of NKp30+CD8+ T cells, by arming these cells with TCRs or chimeric antigen receptors (CARs) targeting Epidermal Growth Factor Receptor 2 (ErbB2, or HER2), a tumor-associated target overexpressed in several malignancies. HER2-specific NKp30+CD8+ T cells killed not only HER2-expressing target cell lines, but also eliminated tumor cells in the absence of MHC-class I or antigen expression, making them especially effective in eliminating heterogeneous tumor cell populations. Our results show that NKp30+CD8+ T cells equipped with a specific TCR or CAR display a dual capacity to recognize and kill target cells, combining the anti-tumor activity of both CD8+ T and NK cells. This dual-recognition capacity allows these effector cells to target tumor heterogeneity, thus improving therapeutic strategies against tumor escape.


Asunto(s)
Receptores Quiméricos de Antígenos , Linfocitos T CD8-positivos , Línea Celular Tumoral , Células Asesinas Naturales , Receptores de Antígenos de Linfocitos T/genética
14.
Nat Immunol ; 21(7): 766-776, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32424367

RESUMEN

Tissue-resident memory T (TRM) cells, functionally distinct from circulating memory T cells, have a critical role in protective immunity in tissues, are more efficacious when elicited after vaccination and yield more effective antitumor immunity, yet the signals that direct development of TRM cells are incompletely understood. Here we show that type 1 regulatory T (Treg) cells, which express the transcription factor T-bet, promote the generation of CD8+ TRM cells. The absence of T-bet-expressing type 1 Treg cells reduces the presence of TRM cells in multiple tissues and increases pathogen burden upon infectious challenge. Using infection models, we show that type 1 Treg cells are specifically recruited to local inflammatory sites via the chemokine receptor CXCR3. Close proximity with effector CD8+ T cells and Treg cell expression of integrin-ß8 endows the bioavailability of transforming growth factor-ß in the microenvironment, thereby promoting the generation of CD8+ TRM cells.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Comunicación Celular/inmunología , Diferenciación Celular/inmunología , Memoria Inmunológica , Linfocitos T Reguladores/inmunología , Traslado Adoptivo , Animales , Linfocitos T CD8-positivos/trasplante , Coccidiosis/inmunología , Coccidiosis/parasitología , Modelos Animales de Enfermedad , Eimeria/inmunología , Femenino , Humanos , Cadenas beta de Integrinas/metabolismo , Masculino , Ratones , Ratones Transgénicos , Receptores CXCR3/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Linfocitos T Reguladores/metabolismo , Linfocitos T Reguladores/trasplante , Factor de Crecimiento Transformador beta/metabolismo
15.
Immunity ; 52(6): 1075-1087.e8, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32445619

RESUMEN

Enhancing immune cell functions in tumors remains a major challenge in cancer immunotherapy. Hypoxia is a common feature of solid tumors, and cells adapt by upregulating the transcription factor HIF-1α. Here, we defined the transcriptional landscape of mouse tumor-infiltrating natural killer (NK) cells by using single-cell RNA sequencing. Conditional deletion of Hif1a in NK cells resulted in reduced tumor growth, elevated expression of activation markers, effector molecules, and an enriched NF-κB pathway in tumor-infiltrating NK cells. Interleukin-18 (IL-18) from myeloid cells was required for NF-κB activation and the enhanced anti-tumor activity of Hif1a-/- NK cells. Extended culture with an HIF-1α inhibitor increased human NK cell responses. Low HIF1A expression was associated with high expression of IFNG in human tumor-infiltrating NK cells, and an enriched NK-IL18-IFNG signature in solid tumors correlated with increased overall patient survival. Thus, inhibition of HIF-1α unleashes NK cell anti-tumor activity and could be exploited for cancer therapy.


Asunto(s)
Citotoxicidad Inmunológica , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Activación de Linfocitos/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Animales , Biomarcadores , Biología Computacional , Citocinas/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Activación de Linfocitos/genética , Ratones , Ratones Noqueados , Células Mieloides/inmunología , Células Mieloides/metabolismo , Neoplasias/inmunología , Neoplasias/metabolismo , Neoplasias/mortalidad , Pronóstico , Análisis de la Célula Individual , Transcriptoma , Microambiente Tumoral/inmunología
16.
Gut ; 69(9): 1677-1690, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-31992593

RESUMEN

OBJECTIVE: TGF-ß2 (TGF-ß, transforming growth factor beta), the less-investigated sibling of TGF-ß1, is deregulated in rodent and human liver diseases. Former data from bile duct ligated and MDR2 knockout (KO) mouse models for human cholestatic liver disease suggested an involvement of TGF-ß2 in biliary-derived liver diseases. DESIGN: As we also found upregulated TGFB2 in liver tissue of patients with primary sclerosing cholangitis (PSC) and primary biliary cholangitis (PBC), we now fathomed the positive prospects of targeting TGF-ß2 in early stage biliary liver disease using the MDR2-KO mice. Specifically, the influence of TgfB2 silencing on the fibrotic and inflammatory niche was analysed on molecular, cellular and tissue levels. RESULTS: TgfB2-induced expression of fibrotic genes in cholangiocytes and hepatic stellate cellswas detected. TgfB2 expression in MDR2-KO mice was blunted using TgfB2-directed antisense oligonucleotides (AON). Upon AON treatment, reduced collagen deposition, hydroxyproline content and αSMA expression as well as induced PparG expression reflected a significant reduction of fibrogenesis without adverse effects on healthy livers. Expression analyses of fibrotic and inflammatory genes revealed AON-specific regulatory effects on Ccl3, Ccl4, Ccl5, Mki67 and Notch3 expression. Further, AON treatment of MDR2-KO mice increased tissue infiltration by F4/80-positive cells including eosinophils, whereas the number of CD45-positive inflammatory cells decreased. In line, TGFB2 and CD45 expression correlated positively in PSC/PBC patients and localised in similar areas of the diseased liver tissue. CONCLUSIONS: Taken together, our data suggest a new mechanistic explanation for amelioration of fibrogenesis by TGF-ß2 silencing and provide a direct rationale for TGF-ß2-directed drug development.


Asunto(s)
Colangitis Esclerosante , Silenciador del Gen , Cirrosis Hepática Biliar , Cirrosis Hepática , Oligonucleótidos Antisentido , Factor de Crecimiento Transformador beta2/genética , Factor de Crecimiento Transformador beta2/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Animales , Colangitis Esclerosante/metabolismo , Colangitis Esclerosante/patología , Modelos Animales de Enfermedad , Descubrimiento de Drogas , Regulación de la Expresión Génica , Células Estrelladas Hepáticas/metabolismo , Humanos , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Cirrosis Hepática/prevención & control , Cirrosis Hepática Biliar/metabolismo , Cirrosis Hepática Biliar/patología , Ratones , Ratones Noqueados , Regulación hacia Arriba , Miembro 4 de la Subfamilia B de Casete de Unión a ATP
17.
Proc Natl Acad Sci U S A ; 115(26): E5980-E5989, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29895693

RESUMEN

CD8+ T cells are considered prototypical cells of adaptive immunity. Here, we uncovered a distinct CD8+ T cell population expressing the activating natural killer (NK) receptor NKp30 in the peripheral blood of healthy individuals. We revealed that IL-15 could de novo induce NKp30 expression in a population of CD8+ T cells and drive their differentiation toward a broad innate transcriptional landscape. The adaptor FcεRIγ was concomitantly induced and was shown to be crucial to enable NKp30 cell-surface expression and function in CD8+ T cells. FcεRIγ de novo expression required promoter demethylation and was accompanied by acquisition of the signaling molecule Syk and the "innate" transcription factor PLZF. IL-15-induced NKp30+CD8+ T cells exhibited high NK-like antitumor activity in vitro and were able to synergize with T cell receptor signaling. Importantly, this population potently controlled tumor growth in a preclinical xenograft mouse model. Our study, while blurring the borders between innate and adaptive immunity, reveals a unique NKp30+FcεRIγ+CD8+ T cell population with high antitumor therapeutic potential.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Inmunidad Celular , Células Asesinas Naturales/inmunología , Receptor 3 Gatillante de la Citotoxidad Natural/inmunología , Neoplasias/inmunología , Receptores Fc/inmunología , Linfocitos T CD8-positivos/patología , Línea Celular Tumoral , Femenino , Células HEK293 , Humanos , Células Asesinas Naturales/patología , Masculino , Neoplasias/patología
18.
Nat Immunol ; 19(7): 650-652, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29915295
19.
Front Immunol ; 9: 827, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29740438

RESUMEN

Natural killer group 2, member D (NKG2D) receptor is a type II transmembrane protein expressed by both innate and adaptive immune cells, including natural killer (NK) cells, CD8+ T cells, invariant NKT cells, γδ T cells, and some CD4+ T cells under certain pathological conditions. NKG2D is an activating NK receptor that induces cytotoxicity and production of cytokines by effector cells and supports their proliferation and survival upon engagement with its ligands. In both innate and T cell populations, NKG2D can costimulate responses induced by other receptors, such as TCR in T cells or NKp46 in NK cells. NKG2D ligands (NKG2DLs) are remarkably diverse. Initially, NKG2DL expression was typically attributed to stressed, infected, or transformed cells, thus signaling "dysregulated-self." However, many reports indicated their expression under homeostatic conditions, usually in the context of cell activation and/or proliferation. Myeloid cells, including macrophages and dendritic cells (DCs), are among the first cells sensing and responding to pathogens and tissue damage. By secreting a plethora of soluble mediators, by presenting antigens to T cells and by expressing costimulatory molecules, myeloid cells play vital roles in inducing and supporting responses of other immune cells in lymphoid organs and tissues. When activated, both macrophages and DCs upregulate NKG2DLs, thereby enabling them with additional mechanisms for regulating lymphocyte responses. In this review, we will focus on the expression of NKG2D by innate and adaptive lymphocytes, the regulation of NKG2DL expression on myeloid cells, and the contribution of the NKG2D/NKG2DL axis to the crosstalk of myeloid cells with NKG2D-expressing lymphocytes. In addition, we will highlight pathophysiological conditions associated with NKG2D/NKG2DL dysregulation and discuss the putative involvement of the NKG2D/NKG2DL axis in the lymphocyte/myeloid cell crosstalk in these diseases.


Asunto(s)
Comunicación Celular , Regulación de la Expresión Génica/inmunología , Linfocitos/metabolismo , Células Mieloides/metabolismo , Subfamilia K de Receptores Similares a Lectina de Células NK/inmunología , Animales , Citocinas/inmunología , Células Dendríticas/inmunología , Antígenos de Histocompatibilidad Clase I , Humanos , Ligandos , Linfocitos/inmunología , Macrófagos/inmunología , Ratones , Células Mieloides/inmunología , Subfamilia K de Receptores Similares a Lectina de Células NK/genética
20.
Front Immunol ; 8: 1479, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29167669

RESUMEN

Tumor-associated macrophages (TAMs) frequently help to sustain tumor growth and mediate immune suppression in the tumor microenvironment (TME). Here, we identified a subset of iron-loaded, pro-inflammatory TAMs localized in hemorrhagic areas of the TME. The occurrence of iron-loaded TAMs (iTAMs) correlated with reduced tumor size in patients with non-small cell lung cancer. Ex vivo experiments established that TAMs exposed to hemolytic red blood cells (RBCs) were converted into pro-inflammatory macrophages capable of directly killing tumor cells. This anti-tumor effect could also be elicited via iron oxide nanoparticles. When tested in vivo, tumors injected with such iron oxide nanoparticles led to significantly smaller tumor sizes compared to controls. These results identify hemolytic RBCs and iron as novel players in the TME that repolarize TAMs to exert direct anti-tumor effector function. Thus, the delivery of iron to TAMs emerges as a simple adjuvant therapeutic strategy to promote anti-cancer immune responses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...