Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 4: 1472, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23403573

RESUMEN

Botulinum neurotoxins (BoNT/A-G) act by blocking synaptic vesicle exocytosis. Whether BoNTs disrupt additional neuronal functions has not been addressed. Here we report that cleavage of syntaxin 1 by BoNT/C, and cleavage of SNAP-25 by BoNT/E both induce degeneration of neurons. Furthermore, although SNAP-25 cleaved by BoNT/A still supports neuron survival, it has reduced capacity to tolerate additional mutations. We demonstrate that syntaxin 1 and SNAP-25 cooperate as SNARE proteins to support neuron survival. Exogenous expression of other homologous SNARE proteins, syntaxin 2/3/4 and SNAP-23, which are resistant to BoNT/C and E in neurons, can substitute syntaxin 1/SNAP-25 and prevent toxin-induced neuron death. Finally, we find that neuronal death is due to blockage of plasma membrane recycling processes that utilize syntaxin 1/SNAP-25, independent of synaptic vesicle exocytosis. These findings establish neuronal cytotoxicity for BoNTs and reveal syntaxin 1/SNAP-25 as the ubiquitous and essential SNARE proteins mediating multiple fusion events on neuronal plasma membranes.


Asunto(s)
Toxinas Botulínicas/toxicidad , Neuronas/metabolismo , Neuronas/patología , Neurotoxinas/toxicidad , Proteína 25 Asociada a Sinaptosomas/metabolismo , Sintaxina 1/metabolismo , Secuencia de Aminoácidos , Animales , Toxinas Botulínicas/química , Muerte Celular/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Endocitosis/efectos de los fármacos , Exocitosis/efectos de los fármacos , Células HEK293 , Humanos , Datos de Secuencia Molecular , Mutación/genética , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Neuronas/efectos de los fármacos , Neurotoxinas/química , Estructura Terciaria de Proteína , Ratas , Vesículas Sinápticas/efectos de los fármacos , Vesículas Sinápticas/metabolismo , Proteína 25 Asociada a Sinaptosomas/genética , Sintaxina 1/química
2.
Trends Neurosci ; 32(3): 150-9, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19162340

RESUMEN

Neurodegenerative tauopathies are marked by their common pathologic feature of aggregates formed of hyperphosphorylated tau protein, which are associated with synapse and neuronal loss. Changes in tau conformation result in both loss of normal function and gain of fibrillogenicity that leads to aggregation. Here, we discuss the pathophysiology of tau and emerging evidence of how changes in this protein might ultimately lead to neuronal death. In particular, based on recent evidence, we propose that a non-apoptotic caspase-associated form of death is occurring in tauopathy.


Asunto(s)
Degeneración Nerviosa/patología , Degeneración Nerviosa/fisiopatología , Tauopatías/fisiopatología , Proteínas tau/metabolismo , Animales , Humanos , Degeneración Nerviosa/genética , Tauopatías/genética , Tauopatías/patología , Proteínas tau/genética
3.
J Biomed Opt ; 13(6): 064039, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19123685

RESUMEN

Tau is a microtubule associated protein that is localized to the axon in neurons. During pathological conditions, including frontotemporal dementia (FTD), a shift in tau isoforms occurs that leads to enhanced expression of a form of tau with four (rather than three) microtubule binding repeats; this has been postulated to alter microtubule structure. Second harmonic generation (SHG) is a technique that allows the visualization of intact microtubules in axons of living neurons without the need for labeling or fixing. We examined how the presence of exogenous tau influences SHG in living neurons. Our results show that the presence of tau significantly enhances SHG, specifically in neuronal axons, despite the presence of tau throughout the entire cell. Our data also suggest that the presence or absence of the fourth microtubule binding repeat does not significantly alter tau's ability to enhance SHG. These results provide evidence that SHG is a useful, noninvasive tool to study tau-microtubule interactions in axons; further, it appears that tau overexpression, rather than specific isoforms, is the major contributor to tau-induced changes in axonal microtubule SHG signal.


Asunto(s)
Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Microscopía Fluorescente/métodos , Neuronas/citología , Neuronas/metabolismo , Mapeo de Interacción de Proteínas/métodos , Tubulina (Proteína)/metabolismo , Proteínas tau/metabolismo , Animales , Células Cultivadas , Ratones , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Tubulina (Proteína)/ultraestructura , Proteínas tau/ultraestructura
4.
Biochim Biophys Acta ; 1739(2-3): 280-97, 2005 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-15615646

RESUMEN

The microtubule-associated protein tau, abundant in neurons, has gained notoriety due to the fact that it is deposited in cells as fibrillar lesions in numerous neurodegenerative diseases, and most notably Alzheimer's disease. Regulation of microtubule dynamics is the most well-recognized function of tau, but it is becoming increasingly evident that tau plays additional roles in the cell. The functions of tau are regulated by site-specific phosphorylation events, which if dysregulated, as they are in the disease state, result in tau dysfunction and mislocalization, which is potentially followed by tau polymerization, neuronal dysfunction and death. Given the increasing evidence that a disruption in the normal phosphorylation state of tau plays a key role in the pathogenic events that occur in Alzheimer's disease and other neurodegenerative conditions, it is of crucial importance that the protein kinases and phosphatases that regulate tau phosphorylation in vivo as well as the signaling cascades that regulate them be identified. This review focuses on recent literature pertaining to the regulation of tau phosphorylation and function in cell culture and animal model systems, and the role that a dysregulation of tau phosphorylation may play in the neuronal dysfunction and death that occur in neurodegenerative diseases that have tau pathology.


Asunto(s)
Enfermedades Neurodegenerativas/metabolismo , Tauopatías/metabolismo , Proteínas tau/metabolismo , Animales , Caspasas/metabolismo , Células Cultivadas , Quinasa 5 Dependiente de la Ciclina , Quinasas Ciclina-Dependientes/metabolismo , Ratones , Ratones Transgénicos , Modelos Animales , Modelos Biológicos , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Proteínas Quinasas/metabolismo
5.
J Biol Chem ; 280(1): 270-6, 2005 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-15522877

RESUMEN

Tau is a microtubule-associated protein found primarily in neurons, and its function is regulated by site-specific phosphorylation. Although it is well established that tau is phosphorylated at both primed and unprimed epitopes by glycogen synthase kinase 3 beta (GSK3 beta), how specific proteins that interact with GSK3 beta regulate tau phosphorylation has not been thoroughly examined. Members of the FRAT (frequently rearranged in advanced T-cell lymphoma) protein family have been shown to interact with GSK3 beta, and FRAT-1 has been shown to modulate the activity of GSK3 beta toward tau and other substrates. However, the effects of FRAT-2 on GSK3 beta activity and tau phosphorylation have not been examined. Therefore in this study the effects of FRAT-2 on GSK3 beta activity and tau phosphorylation were examined. In situ, FRAT-2 significantly increased GSK3 beta-mediated phosphorylation of tau at a primed epitope while not significantly affecting the phosphorylation of unprimed sites. Co-immunoprecipitation studies revealed that association of FRAT-2 with GSK3 beta resulted in a significant increase in phosphorylation of a primed substrate but did not alter phosphorylation of an unprimed substrate. Further, in vitro assays using recombinant proteins directly demonstrated that FRAT-2 enhances GSK3 beta-mediated phosphorylation of a primed substrate to a greater extent than an unprimed substrate. In addition, FRAT-2 is phosphorylated by GSK3 beta. This is the first demonstration of a protein differentially regulating the activity of GSK3 beta toward primed and unprimed epitopes.


Asunto(s)
Proteínas Portadoras/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas tau/metabolismo , Animales , Sitios de Unión , Línea Celular , Cricetinae , Activación Enzimática , Epítopos/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Humanos , Fosforilación , Ratas , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
6.
J Cell Sci ; 117(Pt 24): 5721-9, 2004 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-15537830

RESUMEN

Tau is a group of neuronal microtubule-associated proteins that are formed by alternative mRNA splicing and accumulate in neurofibrillary tangles in Alzheimer's disease (AD) brain. Tau plays a key role in regulating microtubule dynamics, axonal transport and neurite outgrowth, and all these functions of tau are modulated by site-specific phosphorylation. There is significant evidence that a disruption of normal phosphorylation events results in tau dysfunction in neurodegenerative diseases, such as AD, and is a contributing factor to the pathogenic processes. Indeed, the abnormal tau phosphorylation that occurs in neurodegenerative conditions not only results in a toxic loss of function (e.g. decreased microtubule binding) but probably also a toxic gain of function (e.g. increased tau-tau interactions). Although tau is phosphorylated in vitro by numerous protein kinases, how many of these actually phosphorylate tau in vivo is unclear. Identification of the protein kinases that phosphorylate tau in vivo in both physiological and pathological processes could provide potential therapeutic targets for the treatment of AD and other neurodegenerative diseases in which there is tau pathology.


Asunto(s)
Neuronas/fisiología , Proteínas tau/fisiología , Empalme Alternativo , Enfermedad de Alzheimer , Animales , Transporte Axonal , Axones/metabolismo , Encéfalo/metabolismo , Humanos , Microtúbulos/metabolismo , Modelos Biológicos , Enfermedades Neurodegenerativas/patología , Ovillos Neurofibrilares/metabolismo , Neuronas/metabolismo , Fosforilación , Isoformas de Proteínas , Estructura Terciaria de Proteína , ARN Mensajero/metabolismo
7.
J Neurochem ; 83(4): 904-13, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12421363

RESUMEN

Glycogen synthase kinase 3beta (GSK3beta) is an essential protein kinase that regulates numerous functions within the cell. One critically important substrate of GSK3beta is the microtubule-associated protein tau. Phosphorylation of tau by GSK3beta decreases tau-microtubule interactions. In addition to phosphorylating tau, GSK3beta is a downstream regulator of the wnt signaling pathway, which maintains the levels of beta-catenin. Axin plays a central role in regulating beta-catenin levels by bringing together GSK3beta and beta-catenin and facilitating the phosphorylation of beta-catenin, targeting it for ubiquitination and degradation by the proteasome. Although axin clearly facilitates the phosphorylation of beta-catenin, its effects on the phosphorylation of other GSK3beta substrates are unclear. Therefore in this study the effects of axin on GSK3beta-mediated tau phosphorylation were examined. The results clearly demonstrate that axin is a negative regulator of tau phosphorylation by GSK3beta. This negative regulation of GSK3beta-mediated tau phosphorylation is due to the fact that axin efficiently binds GSK3beta but not tau and thus sequesters GSK3beta away from tau, as an axin mutant that does not bind GSK3beta did not inhibit tau phosphorylation by GSK3beta. This is the first demonstration that axin negatively affects the phosphorylation of a GSK3beta substrate, and provides a novel mechanism by which tau phosphorylation and function can be regulated within the cell.


Asunto(s)
Glucógeno Sintasa Quinasa 3/metabolismo , Proteínas/metabolismo , Proteínas Represoras , Proteínas tau/metabolismo , Proteína Axina , Línea Celular , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Glucógeno Sintasa Quinasa 3/química , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3 beta , Humanos , Riñón/citología , Riñón/metabolismo , Sustancias Macromoleculares , Fosforilación/efectos de los fármacos , Pruebas de Precipitina , Proteínas/genética , Proteínas/farmacología , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Eliminación de Secuencia , Transactivadores/genética , Transactivadores/metabolismo , Transfección , beta Catenina , Proteínas tau/química , Proteínas tau/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA