Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biol Chem ; 402(10): 1239-1246, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34355547

RESUMEN

The sensor kinase DcuS of Escherichia coli perceives extracellular fumarate by a periplasmic PASP sensor domain. Transmembrane (TM) helix TM2, present as TM2-TM2' homo-dimer, transmits fumarate activation in a piston-slide across the membrane. The second TM helix of DcuS, TM1, is known to lack piston movement. Structural and functional properties of TM1 were analyzed. Oxidative Cys-crosslinking (CL) revealed homo-dimerization of TM1 over the complete membrane, but only the central part showed α-helical +3/+4 spacing of the CL maxima. The GALLEX bacterial two-hybrid system indicates TM1/TM1' interaction, and the presence of a TM1-TM1' homo-dimer is suggested. The peripheral TM1 regions presented CL in a spacing atypical for α-helical arrangement. On the periplasmic side the deviation extended over 11 AA residues (V32-S42) between the α-helical part of TM1 and the onset of PASP. In the V32-S42 region, CL efficiency decreased in the presence of fumarate. Therefore, TM1 exists as a homo-dimer with α-helical arrangement in the central membrane region, and non-α-helical arrangement in the connector to PASP. The fumarate induced structural response in the V32-S42 region is suggested to represent a structural adaptation to the shift of TM2 in the TM1-TM1'/TM2-TM2' four-helical bundle.


Asunto(s)
Escherichia coli , Transducción de Señal , Conformación Proteica , Proteínas Quinasas
2.
Microorganisms ; 9(7)2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34203512

RESUMEN

The membrane-bound C4-dicarboxylate (C4DC) sensor kinase DcuS of Escherichia coli typically forms a protein complex with the C4DC transporter DctA. The DctA × DcuS complex is able to respond to C4DCs, whereas DcuS without DctA is in the permanent ON state. In DctA, the C-terminal helix 8b (H8b) serves as the site for interaction with DcuS. Here the interaction site in DcuS and the related structural and functional adaptation in DcuS were determined. The Linker connecting transmembrane helix 2 (TM2) and the cytosolic PASC (Per-ARNT-SIM) domain of DcuS, was identified as the major site for interaction with DctA-H8b by in vivo interaction studies. The Linker is known to convert the piston-type transmembrane signaling of TM2 to a tilting motion which relies on a resolution of the Linker-Linker' homodimer in the presence of C4DCs. Absence of DctA caused decreased cross-linking in the Linker, as identified by oxidative Cys-cross-linking. This response resembled structurally and functionally that of fumarate activation in the DctA × DcuS complex. Overall, formation of the DctA × DcuS complex is based on the interaction of the DcuS Linker with DctA H8b; the interaction is required to set DcuS in the C4DC-responsive state by stabilizing the linker-linker' homodimer in DcuS. This work identifies DctA as a structural co-regulator of DcuS sensor kinase.

3.
J Biol Chem ; 296: 100148, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33277358

RESUMEN

Transmembrane (TM) signaling is a key process of membrane-bound sensor kinases. The C4-dicarboxylate (fumarate) responsive sensor kinase DcuS of Escherichia coli is anchored by TM helices TM1 and TM2 in the membrane. Signal transmission across the membrane relies on the piston-type movement of the periplasmic part of TM2. To define the role of TM2 in TM signaling, we use oxidative Cys cross-linking to demonstrate that TM2 extends over the full distance of the membrane and forms a stable TM homodimer in both the inactive and fumarate-activated state of DcuS. An S186xxxGxxxG194 motif is required for the stability and function of the TM2 homodimer. The TM2 helix further extends on the periplasmic side into the α6-helix of the sensory PASP domain and on the cytoplasmic side into the α1-helix of PASC. PASC has to transmit the signal to the C-terminal kinase domain. A helical linker on the cytoplasmic side connecting TM2 with PASC contains an LxxxLxxxL sequence. The dimeric state of the linker was relieved during fumarate activation of DcuS, indicating structural rearrangements in the linker. Thus, DcuS contains a long α-helical structure reaching from the sensory PASP (α6) domain across the membrane to α1(PASC). Taken together, the results suggest piston-type TM signaling by the TM2 homodimer from PASP across the full TM region, whereas the fumarate-destabilized linker dimer converts the signal on the cytoplasmic side for PASC and kinase regulation.


Asunto(s)
Membrana Celular/metabolismo , Citoplasma/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Quinasas/metabolismo , Multimerización de Proteína , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Dominios Proteicos , Proteínas Quinasas/genética
4.
J Proteomics ; 212: 103583, 2020 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-31734389

RESUMEN

In the absence of sugars, C4-dicarboxylates (C4DC) like fumarate represent important substrates for growth of Escherichia coli. Aerobically, C4DCs are oxidized to CO2 whereas anaerobically, C4DCs are used for fumarate respiration. In order to determine the impact of fumarate under aerobic and anaerobic conditions, proteomes of E. coli W3110 grown aerobically or anaerobically with fumarate and/or the non-C4DC substrate glycerol were comparatively profiled by nanoLC-MS/MS. Membrane enrichment allowed sensitive detection of membrane proteins. A total of 1657 proteins of which 646 and 374 were assigned to the cytosol or membrane, respectively, were covered. Presence of fumarate triggered changes (≥ 2fold) to the levels of 211 and 76 proteins under aerobic and anaerobic growth, respectively. The fumarate induced changes included proteins encoded by genes regulated by the C4DC two-component system DcuS-DcuR (DctA, DcuB, FumB, FrdABC proteins) catalyzing uptake and initial catabolic steps. Many of the proteins displaying altered levels are not part of the DcuS-DcuR regulon, including proteins of citric acid cycle and associated pathways (aerobic), proteins involved in motility and chemotaxis (anaerobic), and oxidative stress. Their genes are mostly preceded by cAMP receptor protein (CRP) sites, some by DcuR-like sites. Testing of selected genes confirmed regulation by CRP and DcuS-DcuR. SIGNIFICANCE: Global protein profiling of the soluble and the membrane fraction provides a comprehensive view on the protein pattern of E. coli grown aerobically and anaerobically with or without fumarate. The results disclose during aerobic growth besides the known impact of the C4-dicarboxylates (C4DC) on carbon utilization and citric acid cycle major adaptations in amino acid metabolism. In contrast, protein alterations in the presence of fumarate under anaerobic conditions point to enhanced motility and chemotaxis. Only proteins (transporters, initial metabolic steps) feeding external C4DCs to the central pathways were regulated by the C4DC two-component system DcuS-DcuR, whereas other protein levels were controlled in an indirect manner by CRP triggered catabolite control and other mechanisms. Consequently, metabolic and transcriptional regulation by C4DCs is apparently effected by a network of the DcuS-DcuR system with important contribution by catabolite control.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/crecimiento & desarrollo , Fumaratos/farmacología , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Proteómica/métodos , Aerobiosis , Anaerobiosis , Proteínas de Unión al ADN/metabolismo , Ácidos Dicarboxílicos/metabolismo , Ácidos Dicarboxílicos/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Fumaratos/metabolismo , Proteínas Quinasas/metabolismo , Espectrometría de Masas en Tándem/métodos , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...