Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Pathog ; 19(12): e1011807, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38051755

RESUMEN

Malaria is caused by the rapid proliferation of Plasmodium parasites in patients and disease severity correlates with the number of infected red blood cells in circulation. Parasite multiplication within red blood cells is called schizogony and occurs through an atypical multinucleated cell division mode. The mechanisms regulating the number of daughter cells produced by a single progenitor are poorly understood. We investigated underlying regulatory principles by quantifying nuclear multiplication dynamics in Plasmodium falciparum and knowlesi using super-resolution time-lapse microscopy. This confirmed that the number of daughter cells was consistent with a model in which a counter mechanism regulates multiplication yet incompatible with a timer mechanism. P. falciparum cell volume at the start of nuclear division correlated with the final number of daughter cells. As schizogony progressed, the nucleocytoplasmic volume ratio, which has been found to be constant in all eukaryotes characterized so far, increased significantly, possibly to accommodate the exponentially multiplying nuclei. Depleting nutrients by dilution of culture medium caused parasites to produce fewer merozoites and reduced proliferation but did not affect cell volume or total nuclear volume at the end of schizogony. Our findings suggest that the counter mechanism implicated in malaria parasite proliferation integrates extracellular resource status to modify progeny number during blood stage infection.


Asunto(s)
Malaria Falciparum , Malaria , Parásitos , Animales , Humanos , Parásitos/fisiología , Malaria Falciparum/parasitología , Malaria/parasitología , Plasmodium falciparum/fisiología , Merozoítos/fisiología , Eritrocitos/parasitología
2.
Viruses ; 15(12)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38140605

RESUMEN

Coronavirus infection induces interferon-stimulated genes, one of which encodes Tetherin, a transmembrane protein inhibiting the release of various enveloped viruses from infected cells. Previous studies revealed that SARS-CoV encodes two Tetherin antagonists: the Spike protein (S), inducing lysosomal degradation of Tetherin, and ORF7a, altering its glycosylation. Similarly, SARS-CoV-2 has also been shown to use ORF7a and Spike to enhance virion release in the presence of Tetherin. Here, we directly compare the abilities and mechanisms of these two viral proteins to counteract Tetherin. Therefore, cell surface and total Tetherin levels upon ORF7a or S expression were investigated using flow cytometry and Western blot analysis. SARS-CoV and SARS-CoV-2 S only marginally reduced Tetherin cell surface levels in a cell type-dependent manner. In HEK293T cells, under conditions of high exogenous Tetherin expression, SARS-CoV-2 S and ORF7a reduced total cellular Tetherin levels much more efficiently than the respective counterparts derived from SARS-CoV. Nevertheless, ORF7a from both species was able to alter Tetherin glycosylation. The ability to decrease total protein levels of Tetherin was conserved among S proteins from different SARS-CoV-2 variants (α, γ, δ, ο). While SARS-CoV-2 S and ORF7a both colocalized with Tetherin, only ORF7a directly interacted with the restriction factor in a two-hybrid assay. Despite the presence of multiple Tetherin antagonists, SARS-CoV-2 replication in Caco-2 cells was further enhanced upon Tetherin knockout. Altogether, our data show that endogenous Tetherin restricts SARS-CoV-2 replication and that the antiviral activity of Tetherin is only partially counteracted by viral antagonists with differential and complementary modes of action.


Asunto(s)
Antígeno 2 del Estroma de la Médula Ósea , COVID-19 , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Humanos , Células CACO-2 , COVID-19/metabolismo , COVID-19/virología , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Células HEK293 , SARS-CoV-2/genética , SARS-CoV-2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...