Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(18): e202401808, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38404222

RESUMEN

The discovery of new compounds with pharmacological properties is usually a lengthy, laborious and expensive process. Thus, there is increasing interest in developing workflows that allow for the rapid synthesis and evaluation of libraries of compounds with the aim of identifying leads for further drug development. Herein, we apply combinatorial synthesis to build a library of 90 iridium(III) complexes (81 of which are new) over two synthesise-and-test cycles, with the aim of identifying potential agents for photodynamic therapy. We demonstrate the power of this approach by identifying highly active complexes that are well-tolerated in the dark but display very low nM phototoxicity against cancer cells. To build a detailed structure-activity relationship for this class of compounds we have used density functional theory (DFT) calculations to determine some key electronic parameters and study correlations with the experimental data. Finally, we present an optimised semi-automated synthesise-and-test protocol to obtain multiplex data within 72 hours.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Fotoquimioterapia , Iridio/farmacología , Antineoplásicos/farmacología , Fotoquimioterapia/métodos , Relación Estructura-Actividad , Complejos de Coordinación/farmacología
3.
Nat Rev Chem ; 7(3): 144-161, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36714378

RESUMEN

Synthetic DNA is of increasing demand across many sectors of research and commercial activities. Engineering biology, therapy, data storage and nanotechnology are set for rapid developments if DNA can be provided at scale and low cost. Stimulated by successes in next generation sequencing and gene editing technologies, DNA synthesis is already a burgeoning industry. However, the synthesis of >200 bp sequences remains unaffordable. To overcome these limitations and start writing DNA as effectively as it is read, alternative technologies have been developed including molecular assembly and cloning methods, template-independent enzymatic synthesis, microarray and rolling circle amplification techniques. Here, we review the progress in developing and commercializing these technologies, which are exemplified by innovations from leading companies. We discuss pros and cons of each technology, the need for oversight and regulatory policies for DNA synthesis as a whole and give an overview of DNA synthesis business models.

4.
Synth Biol (Oxf) ; 7(1): ysac023, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36381610

RESUMEN

Standardized deoxyribonucleic acid (DNA) assembly methods utilizing modular components provide a powerful framework to explore designs and iterate through Design-Build-Test-Learn cycles. Biopart Assembly Standard for Idempotent Cloning (BASIC) DNA assembly uses modular parts and linkers, is highly accurate, easy to automate, free for academic and commercial use and enables hierarchical assemblies through an idempotent format. These features enable applications including pathway engineering, ribosome binding site (RBS) tuning, fusion protein engineering and multiplexed guide ribonucleic acid (RNA) expression. In this work, we present basicsynbio, open-source software encompassing a Web App (https://basicsynbio.web.app/) and Python Package (https://github.com/LondonBiofoundry/basicsynbio), enabling BASIC construct design via simple drag-and-drop operations or programmatically. With basicsynbio, users can access commonly used BASIC parts and linkers while designing new parts and assemblies with exception handling for common errors. Users can export sequence data and create instructions for manual or acoustic liquid-handling platforms. Instruction generation relies on the BasicBuild Open Standard, which is parsed for bespoke workflows and is serializable in JavaScript Object Notation for transfer and storage. We demonstrate basicsynbio, assembling 30 vectors using sequences including modules from the Standard European Vector Architecture (SEVA). The BASIC SEVA vector collection is compatible with BASIC and Golden Gate using BsaI. Vectors contain one of six antibiotic resistance markers and five origins of replication from different compatibility groups. The collection is available via Addgene under an OpenMTA agreement. Furthermore, vector sequences are available from within the basicsynbio application programming interface with other collections of parts and linkers, providing a powerful environment for designing assemblies for bioengineering applications. Graphical Abstract.

5.
Lancet Microbe ; 3(11): e814-e823, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36029775

RESUMEN

BACKGROUND: Assessing transmission of SARS-CoV-2 by children in schools is of crucial importance to inform public health action. We assessed frequency of acquisition of SARS-CoV-2 by contacts of pupils with COVID-19 in schools and households, and quantified SARS-CoV-2 shedding into air and onto fomites in both settings. METHODS: We did a prospective cohort and environmental sampling study in London, UK in eight schools. Schools reporting new cases of SARS-CoV-2 infection to local health protection teams were invited to take part if a child index case had been attending school in the 48 h before a positive SARS-CoV-2 PCR test. At the time of the study, PCR testing was available to symptomatic individuals only. Children aged 2-14 years (extended to <18 years in November, 2020) with a new nose or throat swab SARS-CoV-2 positive PCR from an accredited laboratory were included. Incidents involving exposure to at least one index pupil with COVID-19 were identified (the prevailing variants were original, α, and δ). Weekly PCR testing for SARS-CoV-2 was done on immediate classroom contacts (the so-called bubble), non-bubble school contacts, and household contacts of index pupils. Testing was supported by genome sequencing and on-surface and air samples from school and home environments. FINDINGS: Between October, 2020, and July, 2021 from the eight schools included, secondary transmission of SARS-CoV-2 was not detected in 28 bubble contacts, representing ten bubble classes (participation rate 8·8% [IQR 4·6-15·3]). Across eight non-bubble classes, 3 (2%) of 62 pupils tested positive, but these were unrelated to the original index case (participation rate 22·5% [9·7-32·3]). All three were asymptomatic and tested positive in one setting on the same day. In contrast, secondary transmission to previously negative household contacts from infected index pupils was found in six (17%) of 35 household contacts rising to 13 (28%) of 47 household contacts when considering all potential infections in household contacts. Environmental contamination with SARS-CoV-2 was rare in schools: fomite SARS-CoV-2 was identified in four (2%) of 189 samples in bubble classrooms, two (2%) of 127 samples in non-bubble classrooms, and five (4%) of 130 samples in washrooms. This contrasted with fomites in households, where SARS-CoV-2 was identified in 60 (24%) of 248 bedroom samples, 66 (27%) of 241 communal room samples, and 21 (11%) 188 bathroom samples. Air sampling identified SARS-CoV-2 RNA in just one (2%) of 68 of school air samples, compared with 21 (25%) of 85 air samples taken in homes. INTERPRETATION: There was no evidence of large-scale SARS-CoV-2 transmission in schools with precautions in place. Low levels of environmental contamination in schools are consistent with low transmission frequency and suggest adequate cleaning and ventilation in schools during the period of study. The high frequency of secondary transmission in households associated with evident viral shedding throughout the home suggests a need to improve advice to households with infection in children to prevent onward community spread. The data suggest that SARS-CoV-2 transmission from children in any setting is very likely to occur when precautions are reduced. FUNDING: UK Research and Innovation and UK Department of Health and Social Care, National Institute for Health and Care Research.


Asunto(s)
COVID-19 , SARS-CoV-2 , Niño , Humanos , COVID-19/epidemiología , Muestreo , Estudios Prospectivos , Londres/epidemiología , ARN Viral , Instituciones Académicas
6.
Sci Adv ; 8(18): eabm5091, 2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35507663

RESUMEN

Synthetic biology research and its industrial applications rely on deterministic spatiotemporal control of gene expression. Recently, electrochemical control of gene expression has been demonstrated in electrogenetic systems (redox-responsive promoters used alongside redox inducers and electrodes), allowing for the direct integration of electronics with biological processes. However, the use of electrogenetic systems is limited by poor activity, tunability, and standardization. In this work, we developed a strong, unidirectional, redox-responsive promoter before deriving a mutant promoter library with a spectrum of strengths. We constructed genetic circuits with these parts and demonstrated their activation by multiple classes of redox molecules. Last, we demonstrated electrochemical activation of gene expression under aerobic conditions using a novel, modular bioelectrochemical device. These genetic and electrochemical tools facilitate the design and improve the performance of electrogenetic systems. Furthermore, the genetic design strategies used can be applied to other redox-responsive promoters to further expand the available tools for electrogenetics.

7.
Nucleic Acids Res ; 50(3): 1783-1793, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35061908

RESUMEN

The rational design and realisation of simple-to-use genetic control elements that are modular, orthogonal and robust is essential to the construction of predictable and reliable biological systems of increasing complexity. To this effect, we introduce modular Artificial RNA interference (mARi), a rational, modular and extensible design framework that enables robust, portable and multiplexed post-transcriptional regulation of gene expression in Escherichia coli. The regulatory function of mARi was characterised in a range of relevant genetic contexts, demonstrating its independence from other genetic control elements and the gene of interest, and providing new insight into the design rules of RNA based regulation in E. coli, while a range of cellular contexts also demonstrated it to be independent of growth-phase and strain type. Importantly, the extensibility and orthogonality of mARi enables the simultaneous post-transcriptional regulation of multi-gene systems as both single-gene cassettes and poly-cistronic operons. To facilitate adoption, mARi was designed to be directly integrated into the modular BASIC DNA assembly framework. We anticipate that mARi-based genetic control within an extensible DNA assembly framework will facilitate metabolic engineering, layered genetic control, and advanced genetic circuit applications.


Asunto(s)
Escherichia coli , Ingeniería Metabólica , Escherichia coli/genética , Escherichia coli/metabolismo , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Ingeniería Genética , Interferencia de ARN
8.
Sci Rep ; 11(1): 23260, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34853385

RESUMEN

An overreliance on commercial, kit-based RNA extraction in the molecular diagnoses of infectious disease presents a challenge in the event of supply chain disruptions and can potentially hinder testing capacity in times of need. In this study, we adapted a well-established, robust TRIzol-based RNA extraction protocol into a high-throughput format through miniaturization and automation. The workflow was validated by RT-qPCR assay for SARS-CoV-2 detection to illustrate its scalability without interference to downstream diagnostic sensitivity and accuracy. This semi-automated, kit-free approach offers a versatile alternative to prevailing integrated solid-phase RNA extraction proprietary systems, with the added advantage of improved cost-effectiveness for high volume acquisition of quality RNA whether for use in clinical diagnoses or for diverse molecular applications.


Asunto(s)
Prueba de COVID-19/métodos , COVID-19/diagnóstico , Ensayos Analíticos de Alto Rendimiento/métodos , ARN Viral/genética , ARN Viral/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , SARS-CoV-2/genética , COVID-19/virología , Humanos , Técnicas de Diagnóstico Molecular/métodos , ARN Viral/análisis , Curva ROC
9.
J Clin Virol ; 144: 104993, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34619382

RESUMEN

During the course of the SARS-CoV-2 pandemic reports of mutations with effects on spreading and vaccine effectiveness emerged. Large scale mutation analysis using rapid SARS-CoV-2 Whole Genome Sequencing (WGS) is often unavailable but could support public health organizations and hospitals in monitoring transmission and rising levels of mutant strains. Here we report a novel WGS technique for SARS-CoV-2, the EasySeq™ RC-PCR SARS-CoV-2 WGS kit. By applying a reverse complement polymerase chain reaction (RC-PCR), an Illumina library preparation is obtained in a single PCR, thereby saving time, resources and facilitating high-throughput screening. Using this WGS technique, we evaluated SARS-CoV-2 diversity and possible transmission within a group of 173 patients and healthcare workers (HCW) of the Radboud university medical center during 2020. Due to the emergence of variants of concern, we screened SARS-CoV-2 positive samples in 2021 for identification of mutations and lineages. With use of EasySeq™ RC-PCR SARS-CoV-2 WGS kit we were able to obtain reliable results to confirm outbreak clusters and additionally identify new previously unassociated links in a considerably easier workaround compared to current methods. Furthermore, various SARS-CoV-2 variants of interest were detected among samples and validated against an Oxford Nanopore sequencing amplicon strategy which illustrates this technique is suitable for surveillance and monitoring current circulating variants.


Asunto(s)
Genoma Viral , SARS-CoV-2 , Secuenciación Completa del Genoma , COVID-19/virología , Brotes de Enfermedades , Humanos , Reacción en Cadena de la Polimerasa , SARS-CoV-2/genética
10.
PLoS One ; 16(6): e0252263, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34097703

RESUMEN

Reproducibility is a key challenge of synthetic biology, but the foundation of reproducibility is only as solid as the reference materials it is built upon. Here we focus on the reproducibility of fluorescence measurements from bacteria transformed with engineered genetic constructs. This comparative analysis comprises three large interlaboratory studies using flow cytometry and plate readers, identical genetic constructs, and compatible unit calibration protocols. Across all three studies, we find similarly high precision in the calibrants used for plate readers. We also find that fluorescence measurements agree closely across the flow cytometry results and two years of plate reader results, with an average standard deviation of 1.52-fold, while the third year of plate reader results are consistently shifted by more than an order of magnitude, with an average shift of 28.9-fold. Analyzing possible sources of error indicates this shift is due to incorrect preparation of the fluorescein calibrant. These findings suggest that measuring fluorescence from engineered constructs is highly reproducible, but also that there is a critical need for access to quality controlled fluorescent calibrants for plate readers.


Asunto(s)
Bacterias/genética , Ingeniería Genética/métodos , Calibración , Citometría de Flujo/métodos , Fluorescencia , Reproducibilidad de los Resultados , Biología Sintética/métodos
11.
J Virol Methods ; 294: 114174, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33984396

RESUMEN

There is growing evidence that measurement of SARS-CoV-2 viral copy number can inform clinical and public health management of SARS-CoV-2 carriers and COVID-19 patients. Here we show that quantification of SARS-CoV-2 is feasible in a clinical setting, using a duplex RT-qPCR assay which targets both the E gene (Charité assay) and a human RNA transcript, RNase P (CDC assay) as an internal sample sufficiency control. Samples in which RNase P is not amplified indicate that sample degradation has occurred, PCR inhibitors are present, RNA extraction has failed or swabbing technique was insufficient. This important internal control reveals that 2.4 % of nasopharyngeal swabs (15/618 samples) are inadequate for SARS-CoV-2 testing which, if not identified, could result in false negative results. We show that our assay is linear across at least 7 logs and is highly reproducible, enabling the conversion of Cq values to viral copy numbers using a standard curve. Furthermore, the SARS-CoV-2 copy number was independent of the RNase P copy number indicating that the per-swab viral copy number is not dependent on sampling- further allowing comparisons between samples. The ability to quantify SARS-CoV-2 viral copy number will provide an important opportunity for viral burden-guided public health and clinical decision making.


Asunto(s)
Prueba de Ácido Nucleico para COVID-19/métodos , Prueba de Ácido Nucleico para COVID-19/normas , ARN Viral/genética , SARS-CoV-2/genética , Manejo de Especímenes/normas , COVID-19/diagnóstico , COVID-19/virología , Dosificación de Gen , Genes Esenciales , Humanos , Límite de Detección , ARN Viral/aislamiento & purificación , Estándares de Referencia , Ribonucleasa P/genética , Manejo de Especímenes/métodos , Carga Viral
12.
Metab Eng ; 63: 81-101, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33301873

RESUMEN

Synthetic Biology is a rapidly growing interdisciplinary field that is primarily built upon foundational advances in molecular biology combined with engineering design principles such as modularity and interoperability. The field considers living systems as programmable at the genetic level and has been defined by the development of new platform technologies and methodological advances. A key concept driving the field is the Design-Build-Test-Learn cycle which provides a systematic framework for building new biological systems. One major application area for synthetic biology is biosynthetic pathway engineering that requires the modular assembly of different genetic regulatory elements and biosynthetic enzymes. In this review we provide an overview of modular DNA assembly and describe and compare the plethora of in vitro and in vivo assembly methods for combinatorial pathway engineering. Considerations for part design and methods for enzyme balancing are also presented, and we briefly discuss alternatives to intracellular pathway assembly including microbial consortia and cell-free systems for biosynthesis. Finally, we describe computational tools and automation for pathway design and assembly and argue that a deeper understanding of the many different variables of genetic design, pathway regulation and cellular metabolism will allow more predictive pathway design and engineering.


Asunto(s)
Redes y Vías Metabólicas , Biología Sintética , Vías Biosintéticas , Sistema Libre de Células , ADN , Ingeniería Metabólica , Redes y Vías Metabólicas/genética
13.
CRISPR J ; 3(5): 398-408, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33095053

RESUMEN

CRISPR guide RNAs (gRNAs) can be programmed with relative ease to allow the genetic editing of nearly any DNA or RNA sequence. Here, we propose novel molecular architectures to achieve RNA-dependent modulation of CRISPR activity in response to specific RNA molecules. We designed and tested, in both living Escherichia coli cells and cell-free assays for rapid prototyping, cis-repressed RNA-interacting guide RNA (igRNA) that switch to their active state only upon interaction with small RNA fragments or long RNA transcripts, including pathogen-derived mRNAs of medical relevance such as the human immunodeficiency virus infectivity factor. The proposed CRISPR-igRNAs are fully customizable and easily adaptable to the majority if not all the available CRISPR-Cas variants to modulate a variety of genetic functions in response to specific cellular conditions, providing orthogonal activation and increased specificity. We thereby foresee a large scope of application for therapeutic, diagnostic, and biotech applications in both prokaryotic and eukaryotic systems.


Asunto(s)
Técnicas Biosensibles , Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ARN Guía de Kinetoplastida/metabolismo , ARN Mensajero/metabolismo , Proteína 9 Asociada a CRISPR/genética , Sistema Libre de Células , División del ADN , Escherichia coli/genética , Ingeniería Genética , ARN Guía de Kinetoplastida/genética , ARN Mensajero/genética , Transcripción Genética , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/análisis
14.
Synth Biol (Oxf) ; 5(1): ysaa010, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32995552

RESUMEN

Multi-part DNA assembly is the physical starting point for many projects in Synthetic and Molecular Biology. The ability to explore a genetic design space by building extensive libraries of DNA constructs is essential for creating programmed biological systems. With multiple DNA assembly methods and standards adopted in the Synthetic Biology community, automation of the DNA assembly process is now receiving serious attention. Automation will enable larger builds using less researcher time, while increasing the accessible design space. However, these benefits currently incur high costs for both equipment and consumables. Here, we address this limitation by introducing low-cost DNA assembly with BASIC on OpenTrons (DNA-BOT). For this purpose, we developed an open-source software package and demonstrated the performance of DNA-BOT by simultaneously assembling 88 constructs composed of 10 genetic parts, evaluating the promoter, ribosome binding site and gene order design space for a three-gene operon. All 88 constructs were assembled with high accuracy, at a consumables cost of $1.50-$5.50 per construct. This illustrates the efficiency, accuracy and affordability of DNA-BOT, making it accessible for most labs and democratizing automated DNA assembly.

15.
Nat Commun ; 11(1): 4793, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32943631

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

16.
Nat Commun ; 11(1): 4464, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32900994

RESUMEN

The SARS-CoV-2 pandemic has shown how a rapid rise in demand for patient and community sample testing can quickly overwhelm testing capability globally. With most diagnostic infrastructure dependent on specialized instruments, their exclusive reagent supplies quickly become bottlenecks, creating an urgent need for approaches to boost testing capacity. We address this challenge by refocusing the London Biofoundry onto the development of alternative testing pipelines. Here, we present a reagent-agnostic automated SARS-CoV-2 testing platform that can be quickly deployed and scaled. Using an in-house-generated, open-source, MS2-virus-like particle (VLP) SARS-CoV-2 standard, we validate RNA extraction and RT-qPCR workflows as well as two detection assays based on CRISPR-Cas13a and RT-loop-mediated isothermal amplification (RT-LAMP). In collaboration with an NHS diagnostic testing lab, we report the performance of the overall workflow and detection of SARS-CoV-2 in patient samples using RT-qPCR, CRISPR-Cas13a, and RT-LAMP. The validated RNA extraction and RT-qPCR platform has been installed in NHS diagnostic labs, increasing testing capacity by 1000 samples per day.


Asunto(s)
Betacoronavirus/genética , Técnicas de Laboratorio Clínico/métodos , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/virología , Neumonía Viral/diagnóstico , Neumonía Viral/virología , Betacoronavirus/aislamiento & purificación , Bioensayo , COVID-19 , Prueba de COVID-19 , Sistemas CRISPR-Cas , Técnicas de Laboratorio Clínico/instrumentación , Técnicas de Laboratorio Clínico/normas , Humanos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Pandemias , ARN Viral/análisis , ARN Viral/genética , ARN Viral/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa , SARS-CoV-2 , Sensibilidad y Especificidad
17.
Methods Mol Biol ; 2205: 239-253, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32809203

RESUMEN

Biopart Assembly Standard for Idempotent Cloning (BASIC) is a simple, robust, and highly accurate DNA assembly method, which provides 99% correct assemblies for a typical four-part assembly, enabling high efficiency cloning workflows (Storch et al., ACS Synth Biol, https://doi.org/10.1021/sb500356 , 2015). BASIC employs standardised DNA linkers to combine bioparts, stored in the universal BASIC format. Once a new biopart is formatted into BASIC standard, defined by flanking 18 bp prefix and suffix sequences, it can be placed at any position and in any context within a designed BASIC assembly. This modularity of the BASIC approach is further enhanced by a range of functional linkers, including genetic elements like ribosomal binding sites (RBS) and peptide linkers. The method has a single tier format, whereby any BASIC assembly can create a new composite BASIC part in the same format used for the original parts; it can thus enter a subsequent BASIC assembly without the need for reformatting or changes to the workflow. This unique idempotent cloning mechanism allows for the assembly of constructs in multiple, conceptionally simple hierarchical rounds. Combined with its high accuracy and robustness, this makes BASIC a versatile assembly method for combinatorial and complex assemblies both at bench and biofoundry scale. The single universal storage format of BASIC parts enables compressed universal biopart libraries that promote sharing of parts and reproducible assembly strategies across labs, supporting efforts to improve reproducibility. In comparison with other DNA assembly standards and methods, BASIC offers a simple robust protocol, relies on a single tier format, provides for easy hierarchical assembly, and is highly accurate for up to seven parts per assembly round (Casini et al., Nat Rev Mol Cell Biol. https://doi.org/10.1038/nrm4014 , 2015).


Asunto(s)
Clonación Molecular/métodos , ADN/genética , Ingeniería Genética/métodos , Vectores Genéticos/genética , Reproducibilidad de los Resultados , Proyectos de Investigación , Biología Sintética/métodos
18.
PeerJ ; 7: e7529, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31523505

RESUMEN

Synthetic metabolism allows new metabolic capabilities to be introduced into strains for biotechnology applications. Such engineered metabolic pathways are unlikely to function optimally as initially designed and native metabolism may not efficiently support the introduced pathway without further intervention. To develop our understanding of optimal metabolic engineering strategies, a two-enzyme ethanol pathway consisting of pyruvate decarboxylase and acetaldehyde reductase was introduced into Synechocystis sp. PCC 6803. We characteriseda new set of ribosome binding site sequences in Synechocystis sp. PCC 6803 providing a range of translation strengths for different genes under test. The effect of ribosome-bindingsite sequence, operon design and modifications to native metabolism on pathway flux was analysed by HPLC. The accumulation of all introduced proteins was also quantified using selected reaction monitoring mass spectrometry. Pathway productivity was more strongly dependent on the accumulation of pyruvate decarboxylase than acetaldehyde reductase. In fact, abolishment of reductase over-expression resulted in the greatest ethanol productivity, most likely because strains harbouringsingle-gene constructs accumulated more pyruvate decarboxylase than strains carrying any of the multi-gene constructs. Overall, several lessons were learned. Firstly, the expression level of the first gene in anyoperon influenced the expression level of subsequent genes, demonstrating that translational coupling can also occur in cyanobacteria. Longer operons resulted in lower protein abundance for proximally-encoded cistrons. And, implementation of metabolic engineering strategies that have previously been shown to enhance the growth or yield of pyruvate dependent products, through co-expression with pyruvate kinase and/or fructose-1,6-bisphosphatase/sedoheptulose-1,7-bisphosphatase, indicated that other factors had greater control over growth and metabolic flux under the tested conditions.

19.
Nat Commun ; 10(1): 3132, 2019 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-31296848

RESUMEN

The original version of this Comment contained errors in the legend of Figure 2, in which the locations of the fifteenth and sixteenth GBA members were incorrectly given as '(15) Australian Genome Foundry, Macquarie University; (16) Australian Foundry for Advanced Biomanufacturing, University of Queensland.'. The correct version replaces this with '(15) Australian Foundry for Advanced Biomanufacturing (AusFAB), University of Queensland and (16) Australian Genome Foundry, Macquarie University'. This has been corrected in both the PDF and HTML versions of the Comment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...