Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Sci Food Agric ; 103(2): 576-589, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36063445

RESUMEN

BACKGROUND: The year-round availability of apples (Malus × domestica Borkh.) depends on post-harvest technologies, which are essential for the retention of fruit sensory and chemical properties by delaying senescence. The effectiveness of strategies for preserving the quality of apples depends on complex interactions between the storage environment and endogenous biological factors. In the current work, we integrated instrumental, sensory, and transcriptional data to determine the role of conservation technologies cold storage, controlled atmosphere, and 1-methylcyclopropene-mediated ethylene blockage on the long-term conservation of apples. RESULTS: The results demonstrated that inhibition of the consumer's perception of the apples' ethylene content is essential for long-term cold storage, and such quality conservation can be achieved by reducing oxygen pressure. Overall appreciation of apples after storage was determined mainly by their texture, with crispness and juiciness contributing favorably, and mealiness contributing negatively. Reduced oxygen pressure and inhibition of ethylene perception exerted distinct effects on the transcription of candidate genes associated with ripening in apple. Hexose and cell-wall carbohydrate metabolism genes exhibit distinct expression patterns under storage. CONCLUSION: Inhibition of ethylene perception and reduction of relative oxygen pressure under cold storage both promote similar conservation of apple sensory traits under long-term cold storage. Texture was the main contributor to global appreciation of apples subjected to long-term storage. The conditions that were investigated were able to delay, but not fully prevent, senescence, as evidenced by physicochemical and gene expression analyses. The expression of gene-encoding enzymes involved in hexose metabolism was mainly developmentally regulated, whereas storage conditions exerted a stronger effect on the expression of genes associated with cell-wall metabolism. © 2022 Society of Chemical Industry.


Asunto(s)
Malus , Malus/química , Etilenos/metabolismo , Frutas/química , Atmósfera , Oxígeno/análisis
2.
Mol Genet Genomics ; 295(6): 1443-1457, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32700103

RESUMEN

The apple is a highly perishable fruit after harvesting and, therefore, several storage technologies have been studied to provide the consumer market with a quality product with a longer shelf life. However, little is known about the apple genome that is submitted to the storage, and even less with the application of ripening inhibitors. Due to these factors, this study sought to elucidate the transcriptional profile of apple cultivate Gala stored in a controlled atmosphere (AC) treated and not treated with 1-methyl cyclopropene (1-MCP). Through the genetic mapping of the apple, applying the microarray technique, it was possible to verify the action of treatments on transcripts related to photosynthesis, carbohydrate metabolism, response to hormonal stimuli, nucleic acid metabolism, reduction of oxidation, regulation of transcription and metabolism of cell wall and lipids. The results showed that the transcriptional profile in the entire genome of the fruit showed significant differences in the relative expression of the gene, this in response to CA in the presence and absence of 1-MCP. It should be noted that the transcription genes involved in the anabolic pathway were only maintained after six months in fruits treated with 1-MCP. The data in this work suggests that the apple in the absence of 1-MCP begins to prepare its metabolism to mature, even during the storage period in AC. Meanwhile, in the presence of the inhibitor, the transcriptional profile of the fruit is similar to that at the time of harvest. It was also found that a set of genes that code for ethylene receptors, auxin homeostasis, MADS Box, and NAC transcription factors may be involved in the regulation of post-harvest ripening after storage and in the absence of 1-MCP.


Asunto(s)
Ciclopropanos/metabolismo , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Malus/metabolismo , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Almacenamiento de Alimentos , Frutas/crecimiento & desarrollo , Malus/crecimiento & desarrollo , Proteínas de Plantas/genética , Factores de Transcripción/genética
3.
J Agric Food Chem ; 65(35): 7813-7826, 2017 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-28771353

RESUMEN

Apple is commercially important worldwide. Favorable genomic contexts and postharvest technologies allow year-round availability. Although ripening is considered a unidirectional developmental process toward senescence, storage at low temperatures, alone or in combination with ethylene blockage, is effective in preserving apple properties. Quality traits and genome wide expression were integrated to investigate the mechanisms underlying postharvest changes. Development and conservation techniques were responsible for transcriptional reprogramming and distinct programs associated with quality traits. A large portion of the differentially regulated genes constitutes a program involved in ripening and senescence, whereas a smaller module consists of genes associated with reestablishment and maintenance of juvenile traits after harvest. Ethylene inhibition was associated with a reversal of ripening by transcriptional induction of anabolic pathways. Our results demonstrate that the blockage of ethylene perception and signaling leads to upregulation of genes in anabolic pathways. We also associated complex phenotypes to subsets of differentially regulated genes.


Asunto(s)
Etilenos/farmacología , Frutas/genética , Malus/genética , Proteínas de Plantas/genética , Frío , Frutas/efectos de los fármacos , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Malus/efectos de los fármacos , Malus/metabolismo , Proteínas de Plantas/metabolismo , Transcripción Genética
4.
Food Chem ; 182: 111-9, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25842316

RESUMEN

Fruit texture changes impair the quality of apples submitted to long term storage, especially under cold. The changes are due to cell wall modifications during ripening and senescence and are associated to ethylene. We have investigated the activity of α-l-arabinofuranosidase, a glycosyl hydrolase acting on the side chains of pectin in the cell wall and middle lamella. The transcription of arabinofuranosidase coding sequences 1 and 3 was investigated in plant organs and in response to ethylene, employing hormone application and 1-methylcyclopropene. The transcription of arabinofuranosidase genes is not restricted to fruits, although upregulated by ripening and ethylene. Transcripts of the genes were detected under cold storage up to 180 days. Similarly, arabinofuranosidase activity increased with rising levels of ethylene and under cold storage. Levels of arabinofuranosidase3 transcripts were higher than those of arabinofuranosidase1, suggesting that the first is an important contributor to enzyme activity and texture changes during cold storage.


Asunto(s)
Frutas/química , Glicósido Hidrolasas/química , Malus/química , Pared Celular , Almacenamiento de Alimentos , Frutas/genética , Expresión Génica , Glicósido Hidrolasas/genética , Malus/genética , Pectinas , Temperatura
5.
PLoS One ; 10(3): e0120599, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25774904

RESUMEN

Reverse Transcription quantitative PCR (RT-qPCR) is one of the most important techniques for gene expression profiling due to its high sensibility and reproducibility. However, the reliability of the results is highly dependent on data normalization, performed by comparisons between the expression profiles of the genes of interest against those of constitutively expressed, reference genes. Although the technique is widely used in fruit postharvest experiments, the transcription stability of reference genes has not been thoroughly investigated under these experimental conditions. Thus, we have determined the transcriptional profile, under these conditions, of three genes commonly used as reference--ACTIN (MdACT), PROTEIN DISULPHIDE ISOMERASE (MdPDI) and UBIQUITIN-CONJUGATING ENZYME E2 (MdUBC)--along with two novel candidates--HISTONE 1 (MdH1) and NUCLEOSSOME ASSEMBLY 1 PROTEIN (MdNAP1). The expression profile of the genes was investigated throughout five experiments, with three of them encompassing the postharvest period and the other two, consisting of developmental and spatial phases. The transcriptional stability was comparatively investigated using four distinct software packages: BestKeeper, NormFinder, geNorm and DataAssist. Gene ranking results for transcriptional stability were similar for the investigated software packages, with the exception of BestKeeper. The classic reference gene MdUBC ranked among the most stably transcribed in all investigated experimental conditions. Transcript accumulation profiles for the novel reference candidate gene MdH1 were stable throughout the tested conditions, especially in experiments encompassing the postharvest period. Thus, our results present a novel reference gene for postharvest experiments in apple and reinforce the importance of checking the transcription profile of reference genes under the experimental conditions of interest.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Malus/genética , Transcriptoma , Biología Computacional , Perfilación de la Expresión Génica , Estabilidad del ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...